• Title/Summary/Keyword: 정밀위성궤도

Search Result 205, Processing Time 0.022 seconds

Integrated Ray Tracing Model for In-Orbit Optical Performance Simulation for GOCI (통합적 광추적 모델에 의한 해양탑재체 GOCI의 궤도 상 광학 성능 검증)

  • Ham, Seon-Jeong;Lee, Jae-Min;Kim, Seong-Hui;Yun, Hyeong-Sik;Gang, Geum-Sil;Myeong, Hwan-Chun;Kim, Seok-Hwan
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • GOCi (Geostationary Ocean Color Imager) is one of the COMS payloads that KARI is currently developing and scheduled to be in operation from around 2008. Its primary objective is to monitor the Korean coastal water environmental condition. We report the current progress in development of the integrated optical model as one of the key analysis tools for the GOCI in-orbit performance verification. The model includes the Sun as the emitting light source. The curved Earth surface section of 2500 km x 2500 km includingthe Korean peninsular os defined as a Lambertian scattering surface consisted of land and sea surface. From its geostationary orbit, the GOCI optical system observes the reflected light from the surfaces with varying reflectance representing the changes in its environmental conditions. The optical ray tracing technique was used to demonstrate the GOCI in-orbit performances such as red tide detection. The computational concept, simulation results and its implications to the on-going development of GOCI are presented.

  • PDF

Analysis for Influence and Geometry of GPS/Galileo System (GPS/Galileo 시스템의 기하구조 및 영향 분석)

  • Lee Jae-One
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.763-770
    • /
    • 2005
  • Global Navigation Satellite System (GNSS) has become an indispensable tool for providing precise position, velocity and time information for many applications like traditional surveying and navigation etc. However, Global Positioning System (GPS), which was developed and is maintained and operated by the U.S. Department of Defence (DoD), has monopolized the world industry and market, and hence there exists the situation that most of GNSS users absolutely depend upon the GPS. In order to overcome the monopoly, some countries, such as Russia, Japan and European Union (EU), have developed their own GNSSs, so-called GLONASS, JRANS and Galileo systems. Among them, the most prospective system in near future is EU's Galileo system scheduled to launch in 2008. This research has focused on the next generation GNSS system based on GPS and Gralileo system with developing a GNSS simulation software, named as GIMS2005, which generates and analyzes satellite constellation and measurements. Based on the software, a variety of simulation tests have been carried out to recognize limits of GPS-only system and potential benefits of integrated GPS/Galileo positioning. Geometry simulation results have showed that comparing with GPS-only case, the number qf visual satellites, Dilution of Precision (DOP) values, internal reliabilities and external reliabilities.

Research for Generation of Accurate DEM using High Resolution Satellite Image and Analysis of Accuracy (고해상도 위성영상을 이용한 정밀 DEM 생성 및 정확도 분석에 관한 연구)

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.359-365
    • /
    • 2008
  • This paper focused on generation of more accurate DEM and analysis of accuracy. For this, we applied suitable sensor modeling technique for each satellite image and automatic pyramid matching using image pyramid was applied. Matching algorithm based on epipolarity and scene geometry also was applied for stereo matching. IKONOS, Quickbird, SPOT-5, Kompsat-2 were used for experiments. In particular, we applied orbit-attitude sensor modeling technique for Kompsat-2 and performed DEM generation successfully. All DEM generated show good quality. Assessment was carried out using USGS DTED and we also compared between DEM generated in this research and DEM generated from common software. All DEM had $9m{\sim}12m$ Mean Absolute Error and $13m{\sim}16m$ RMS Error. Experimental results show that the DEMs of good performance which is similar to or better than result of DEMs generated from common software.

Accuracy analysis on the temperature measurement with thermistor (인공위성용 서미스터의 온도측정 정확도 분석)

  • Suk, Byong-Suk;Lee, Yun-Ki;Lee, Na-Young
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2008
  • The thermistors and AD590 are widely used for temperature measurement in space application. The resistance of thermistor will vary according to the temperature variation therefore the external voltage or current stimulus signal have to be provided to measure resistance variation. Recently high resolution electro optic camera system of satellite requires tight thermal control of the camera structure to minimize the thermal structural distortion which can affects the image quality. In order to achieve $1^{\circ}$(deg C) thermal control requirement, the accuracy of temperature measurement have to be higher than $0.3^{\circ}$(deg C). In this paper, the accuracy of temperature measurement using thermistors is estimated and analyzed.

  • PDF

The Effect of Equatorial Spread F on Relative Orbit Determination of GRACE Using Differenced GPS Observations (DGPS기반 GRACE의 상대궤도결정과 Equatorial Spread F의 영향)

  • Roh, Kyoung-Min;Luehr, Hermann;Park, Sang-Young;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.499-510
    • /
    • 2009
  • In this paper, relative orbit of Low Earth Orbit satellites is determined using only GPS measurements and the effects of Equatorial Spread-F (ESF), that is one of biggest ionospheric irregularities, are investigated. First, relative orbit determiation process is constructed based on doubly differenced GPS observations. In order to see orbit determination performance, relative orbit of two GRACE satellites is estimated for one month in 2004 when no ESF is observed. The root mean square of the achieved baselines compared with that from K-Band Ranger sensor is about 2~3 mm and average of 95% of ambiguities are resolved. Based on this performance, the relative orbit is estimated for two weeks of two difference years, 2003 when there are lots of ESF occurred, and 2004 when only few ESF occurred. For 2003, the averaged baseline error over two weeks is about 15 mm. That is about 4 times larger than the case of 2004 (3.6 mm). Ionospheric status achieved from K-Band Ranging sensor also shows that more Equatorial Spread-F occurred at 2003 than 2004. Investigation on raw observations and screening process revealed that the ionospheric irregualarities caused by Equatorial Spread-F gave significant effects on GPS signal like signal loss or enhancement ionospheric error, From this study, relative orbit determination using GPS observations should consider the effect of Equatorial Spread-F and adjust orbit determination strategy, especially at the time of solar maximum.

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.

Matching and Geometric Correction of Multi-Resolution Satellite SAR Images Using SURF Technique (SURF 기법을 활용한 위성 SAR 다중해상도 영상의 정합 및 기하보정)

  • Kim, Ah-Leum;Song, Jung-Hwan;Kang, Seo-Li;Lee, Woo-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.431-444
    • /
    • 2014
  • As applications of spaceborne SAR imagery are extended, there are increased demands for accurate registrations for better understanding and fusion of radar images. It becomes common to adopt multi-resolution SAR images to apply for wide area reconnaissance. Geometric correction of the SAR images can be performed by using satellite orbit and attitude information. However, the inherent errors of the SAR sensor's attitude and ground geographical data tend to cause geometric errors in the produced SAR image. These errors should be corrected when the SAR images are applied for multi-temporal analysis, change detection applications and image fusion with other sensor images. The undesirable ground registration errors can be corrected with respect to the true ground control points in order to produce complete SAR products. Speeded Up Robust Feature (SURF) technique is an efficient algorithm to extract ground control points from images but is considered to be inappropriate to apply to SAR images due to high speckle noises. In this paper, an attempt is made to apply SURF algorithm to SAR images for image registration and fusion. Matched points are extracted with respect to the varying parameters of Hessian and SURF matching thresholds, and the performance is analyzed by measuring the imaging matching accuracies. A number of performance measures concerning image registration are suggested to validate the use of SURF for spaceborne SAR images. Various simulations methodologies are suggested the validate the use of SURF for the geometric correction and image registrations and it is shown that a good choice of input parameters to the SURF algorithm should be made to apply for the spaceborne SAR images of moderate resolutions.

미소진동 감쇠를 위한 진동저감 장치 연구

  • Kim, Chang-Ho;Kim, Gyeong-Won;Im, Jae-Hyeok;Kim, Hong-Bae;Hwang, Do-Sun
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.32.3-32.3
    • /
    • 2011
  • 통신위성은 지향성에 대한 요구조건이 상대적으로 느슨하지만 광학 카메라나 영상 레이다를 이용하여 지구를 관측하는 관측위성의 경우 고품질의 영상을 위해 정밀한 지향성 및 지향 안정성이 요구되나 극심한 열 하중에 의한 열변형 및 임무궤도 상에서 발생하는 미소진동 등은 지향 안정성을 영향을 주며 영상의 품질을 저하시킨다. 특히 자세제어를 위해 쓰이는 반작용휠이나 지상과의 송수신을 위한 안테나들은 그 기능을 수행하기 위해 작동하는 과정에서 미소진동을 발생시키고 이는 카메라나 레이다에 외란으로 작용하기 때문에 이를 최소화할 필요가 있다. 이 논문은 미소진동을 저감시키기 위한 진동저감 장치의 성능과 효율성 분석을 그 목적으로 한다.

  • PDF

Estimation of Fire Emissions Using Fire Radiative Power (FRP) Retrieved from Himawari-8 Satellite (히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로)

  • Kim, Deasun;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1029-1040
    • /
    • 2017
  • Wildfires release a large amount of greenhouse gases (GHGs) into the atmosphere. Fire radiative power (FRP) data obtained from geostationary satellites can play an important role for tracing the GHGs. This paper describes an estimation of the Himawari-8 FRP and fire emissions for Samcheock and Gangnueng wildfire in 6 May 2017. The FRP estimated using Himawari-8 well represented the temporal variability of the fire intensity, which cannot be captured by MODIS (Moderate Resolution Imaging Spectroradiometer) because of its limited temporal resolution. Fire emissions calculated from the Himwari-8 FRP showed a very similar time-series pattern compared with the AirKorea observations, but 1 to 3 hour's time-lag existed because of the distance between the station and the wildfire location. The estimated emissions were also compared with those of a previous study which analyzed fire damages using high-resolution images. They almost coincided with 12% difference for Samcheock and 2% difference for Gangneung, demonstrating a reliability of the estimation of fire emissions using our Himawari-8 FRP without high-resolution images. This study can be a reference for estimating fire emissions using the current and forthcoming geostationary satellites in East Asia and can contribute to improving accuracy of meteorological products such as AOD (aerosol optical depth).

Co-registration Between PAN and MS Bands Using Sensor Modeling and Image Matching (센서모델링과 영상매칭을 통한 PAN과 MS 밴드간 상호좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.13-21
    • /
    • 2021
  • High-resolution satellites such as Kompsat-3 and CAS-500 include optical cameras of MS (Multispectral) and PAN (Panchromatic) CCD (Charge Coupled Device) sensors installed with certain offsets. The offsets between the CCD sensors produce geometric discrepancy between MS and PAN images because a ground target is imaged at slightly different times for MS and PAN sensors. For precise pan-sharpening process, we propose a co-registration process consisting the physical sensor modeling and image matching. The physical sensor model enables the initial co-registration and the image matching is carried out for further refinement. An experiment with Kompsat-3 images produced RMSE (Root Mean Square Error) 0.2pixels level of geometric discrepancy between MS and PAN images.