• Title/Summary/Keyword: 정밀여과막

Search Result 111, Processing Time 0.02 seconds

Composite Membrane Preparation for Low Pressure Using Salting-Out Method and Its Application to Nanofiltration Process (염석법에 의한 저압용 역삼투막 제조 및 NF로의 적용)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.440-446
    • /
    • 2015
  • Nanofiltration composite membranes were prepared through the ion exchange polymers coating onto the porous microfiltration polyethylene (PE) membrane surfaces the salting-out and phase separated and pressurization (PSP) methods. The existence of coating on the surfaces was confirmed by the scanning electronic microscopy. The resulting membranes were characterized under the various conditions, such as the coating material, coating time, ionic strength etc., in terms of flux and rejection for NaCl 100 ppm solution. Under the same coating conditions of 10,000 ppm coating solution concentration and 3 atm coating pressure for both the coating materials of PEI and PSSA_MA, the flux 91.2 LMH and rejection 64.6% were obtained for PEI whereas 122.7 LMH and 38.1% were observed for PSSA_MA. From this study, it may be concluded that the composite membrane preparation is possible.

Preparation of a ultrathin hollow fiber ceramic microfiltration membrane (초극세 중공사형 세라믹 정밀여과막 제조)

  • Park, In-Hwan;Kim, In-Chul;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.144-146
    • /
    • 2004
  • Various polymeric hollow fiber membranes have been prepared and been used widely due to their high surface area per unit volume and high permselectivity. However, the organic materials are only limited to mild operating conditions because of their weak thermal stability and ease of fouling.(omitted)

  • PDF

Lake Water Treatment Using a Ultrafiltration Membrane Process of Hollow Fiber Type (중공사형 한외여과 막분리 공정에 의한 하천수 처리)

  • 구정현;원진아;박진용
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.40-42
    • /
    • 1997
  • 수처리 공정의 목적은 원수 중에 포함된 콜로이드, 미립자 등의 현탁물질, 이온과 유기물 등의 용해성 물질의 제거로, 이러한 목적을 위해서 수처리공정에 막분리 기술을 이용하는데 관심이 높아지고 있고, 이미 일부에서는 실용화되었다. 분리막에는 분리막의 기공의 크기에 따라 역삼투막, 한외여과막, 정밀여과막이 있으며, 대상 폐수 및 처리수의 재활용 여부에 따라 선정하여 사용한다. 본 연구에서는 폴리설폰 재질의 중공사하여 한외여과막을 사용하여 하천수를 처리하여 투과수와 원수의 수질을 비교함으로써, 분리막 기술에 의한 하천수처리의 타당성 및 처리 효율을 고찰해 보고자 하였다. 대상 원수로 최근 생활하수의 유입으로 수질이 악화되고 있는 소양강의 한 지류인 공지천의 물을 사용하였다.

  • PDF

Effect of coagaulation on ceramic microfiltration membrane fouling (응집공정이 세라믹 정밀여과막 파울링에 미치는 영향)

  • Hwang, Young Jin;Lim, Jae Lim;Choi, Young Jong;Wang, Chang Gun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.459-469
    • /
    • 2009
  • It is well known that coagulation pretreatment can reduce foulants prior to membrane filtration. The purpose of this research was to investigate the effects of coagulation on fouling of ceramic microfiltration membrane($0.1 {\mu}m$) using pilot plant of $150m^3/day/train$ capacity. Train A membrane system has pretreatment process of ozonation and coagulation while train B has only coagulation. Two types of coagulation operation were investigated: back mixer(rapid mixing with or without slow mixing) which is a conventional mechanically stirred mixer and an inline static mixer. Ozone dose rate for train A was 1 mg/L and ozone contact time was 12 min. The coagulation dose(PACl 10% as $Al_2O_3$) rate was changed 20~40 mg/L according to experimental schedule. In this experimental conditions, the coagulation of back mixer type with rapid mixing(GT=72,000) and slow mixing(GT=45,000) was the best effective in reduction of ceramic membrane fouling regardless preozonation. Especially, the effect of inline static mixer was sensitive to change in water quality. Ozonation mainly affected irreversible fouling rather than reversible fouling in accordance with less adsorption of NOM on the membrane surface. Thus, the increase rate of the nomalized TMP(trans membrane pressure) at $25^{\circ}C$ for train A was relatively lower than that of train B under same coagulation process with same coagulant dosage. The best performance of ceramic membrane appeared in case of combined process with ozonation, therefore this integrated process is able to archive less coagulant dosing and secure a stability of ceramic membrane system.

세라믹막을 이용한 O/W 타입 에멀젼의 정밀여과

  • 현상훈;조철구;김계태;강환규
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.80-80
    • /
    • 1994
  • 세라믹막을 이용한 oil 폐수 처리의 기초 연구로서 정밀여과용 세라믹막의 제조와 oil(kerosene)-in-water 타입 에멀젼에 대한 막분리 효율이 연구되었다. 정밀여과 막으로서는 압출(extrusion)법으로 성형하여 제조한 $\alpha$-알루미나 튜브(평균 기공크기 0.9 $\mum$)와 이들 튜브(담체)내부에 $ZrO_2$ 또는 $Al_2O_3$ 다공성 박막을 코팅한 2층 구조의 복합막들을 사용하였다. 담체의 높은 투과율 ($1700 l/m^2\cdot h$ at $\Deltap = 1$ atm)을 어느정도 유지하면서 막분리 효율을 증대시킬 수 있는 새로운 슬러리 코팅법이 개발되엇으며, 코팅후 950-1300$\circ$C 에서 열처리한 코팅층의 두께와 평균 기공크기는 각각 5 - 20 $\mum$정도 이었다. 정밀여과막의 특성평가를 위하여 막 제조조건에 따른 코팅층의 두께 및 결함유무를 SEM으로 일단 관찰한 후에 Bubble Point Test와 Mercury Porosimeter를 이용하여 측정한 최대 및 평균 기공반경과 물의 투과량으로부터 막 전체에 대한 결함 유무와 결함의 허용한도등을 비교 분석하였다.

  • PDF

Effect of Water Back-flushing Time and Polypropylene Beads in Hybrid Water Treatment Process of Photocatalyst-coated PP Beads and Alumina Microfiltration Membrane (광촉매 코팅 폴리프로필렌(PP) 비드와 알루미나 정밀여과막의 혼성 수처리 공정에서 물역세척 시간 및 PP 비드의 영향)

  • Park, Jin Yong;Kim, Sunga;Bang, Taeil
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.301-309
    • /
    • 2016
  • The effects of water back-flushing time (BT) and photocatalyst-coated polypropylene (PP) beads were investigated in hybrid water treatment process of alumina microfiltration and the PP beads in this study, and compared with the previous study with alumina ultrafiltration membrane and the same PP beads. The BT was changed in the range of 6~30 s with fixed 10 min of back-flushing period (FT). Then, the BT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As longer BT, $R_f$ decreased and J increased dramatically; however, $V_T$ was the maximum at BT 10 s. The treatment efficiency of turbidity was high beyond 99.0%, and the BT effect was not shown. The treatment efficiency of organic matters was the highest value of 89.0% at no back-flushing (NBF), and increased as longer BT. The optimum input concentration of the PP beads was 20 g/L in the viewpoint of membrane fouling; however, the optimum PP beads of the previous study was 40 g/L. The treatment efficiency of turbidity and organic matters were the maximum at 30 g/L of the PP beads; however, those of the previous study with alumina ultrafiltration membrane and the same PP beads were the highest at 40 g/L.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Multi-channels Ceramic Microfiltration and Activated Carbon Adsorption (다채널 세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리)

  • Park, Jin-Yong;Lee, Hyuk-Chan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.325-335
    • /
    • 2008
  • In this study, we used multi-channels ceramic membrane having larger permeate volume per unit time rather than tubular membrane. The hybrid process for advanced drinking water treatment was composed of granular activated carbons (GAC) packing between module inside and outside of multi-channels microfiltration membrane. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Kaolin concentration was fixed at 30mg/L and humic acid was changed as $2{\sim}10\;mg/L$ to inspect effect of organic matters. As a result, both resistance of membrane fouling ($R_f$) and permeate flux (J) were highly influenced by concentration of humic acid. Also, in result of water-back-flushing period (FT) effect, the shorter FT was the more effective to reduce membrane fouling and to enhance permeate flux because of frequent water-back-flushing. However, the optimal FT condition was 8 min when operating costs were considered. Then, the hybrid process using multi-channels ceramic membrane and GAC was applied to lake water treatment. As a result, average treatment efficiencies in our experiment using the hybrid process were 98.02% for turbidity, 75.64% for $UV_{254}$ absorbance, 7.18% for TDS and 84.73% for $COD_{Mn}$.