• Title/Summary/Keyword: 정밀도로지도

Search Result 83, Processing Time 0.028 seconds

Accurate Spatial Information Mapping System Using MMS LiDAR Data (MMS LiDAR 자료 기반 정밀 공간 정보 매핑 시스템)

  • CHOUNG, Yun-Jae;CHOI, Hyeoung-Wook;PARK, Hyeon-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Mapping accurate spatial information is important for constructing three-dimensional (3D) spatial models and managing artificial facilities, and, especially, mapping road centerlines is necessary for constructing accurate road maps. This research developed a semi-automatic methodology for mapping road centerlines using the MMS(Mobile Mapping System) LiDAR(Light Detection And Ranging) point cloud as follows. First, the intensity image was generated from the given MMS LiDAR data through the interpolation method. Next, the line segments were extracted from the intensity image through the edge detection technique. Finally, the road centerline segments were manually selected among the extracted line segments. The statistical results showed that the generated road centerlines had 0.065 m overall accuracy but had some errors in the areas near road signs.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

Research on Longitudinal Slope Estimation Using Digital Elevation Model (수치표고모델 정보를 활용한 도로 종단경사 산출 연구)

  • Han, Yohee;Jung, Yeonghun;Chun, Uibum;Kim, Youngchan;Park, Shin Hyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.84-99
    • /
    • 2021
  • As the micro-mobility market grows, the demand for route guidance, that includes uphill information as well, is increasing. Since the climbing angle depends on the electric motor uesed, it is necessary to establish an uphill road DB according to the threshold standard. Although road alignment information is a very important element in the basic information of the roads, there is no information currently on the longitudinal slope in the road digital map. The High Definition(HD) map which is being built as a preparation for the era of autonomous vehicles has the altitude value, unlike the existing standard node link system. However, the HD map is very insufficient because it has the altitude value only for some sections of the road network. This paper, hence, intends to propose a method to generate the road longitudinal slope using currently available data. We developed a method of computing the longitudinal slope by combining the digital elevation model and the standard link system. After creating an altitude at the road link point divided by 4m based on the Seoul road network, we calculated individual slope per unit distance of the road. After designating a representative slope for each road link, we have extracted the very steep road that cannot be climbed with personal mobility and the slippery roads that cannot be used during heavy snowfall. We additionally described errors in the altitude values due to surrounding terrain and the issues related to the slope calculation method. In the future, we expect that the road longitudinal slope information will be used as basic data that can be used for various convergence analyses.

The 3-dimensional modeling of buildings in urban areas using digital maps and LiDAR data (수치지도와 LiDAR 자료를 이용한 도시지역 건물 3차원 모델링)

  • 이원희;유기윤
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.394-399
    • /
    • 2003
  • 도시 지역의 대부분을 차지하는 건물에 대한 3차원 정보는 도로, 교통 등의 시설물관리시스템 구축, 도로계획, 택지개발, 도시계획 등 여러 분야에 필요하다. 현재 항공사진, 고해상도 위성영상, LiDAR 자료, 수치사진측량 시스템 등의 보급과 분석 알고리즘의 발전으로 인하여 도시지역 건물 3차원 모델링에 대한 연구가 활발히 진행되고 있는데, 그 중에서 정밀한 DSM 취득이 가능한 LiDAR 자료가 도시지역 건물 3차원 모델링에 가장 유망한 자료이다. 그러나 LiDAR 자료만을 이용할 경우에는 선형화 과정 등의 수작업이 많이 들어가고, 주관적인 재구성과정이 들어가야 하는 문제점이 있다. 따라서 본 연구에서는 수치지도를 LiDAR 자료와 같이 이용하여 건물 3차원 모델링시 작업자의 수동적인 과정을 단축하였다. 항공사진과 해석도화기를 이용한 정확도 평가 결과 1:5,000 수치지도 정확도 규정을 만족하는 도시지역 건물 3차원 모델링이 가능하였고, 비교적 자동화된 공정을 이루었다.

  • PDF

A Study on the Architecture Design of Road and Facility Operation Management System for 3D Spatial Data Processing (3차원 공간데이터 처리를 위한 차로 및 시설물 운영 관리 시스템 아키텍처 설계 연구)

  • KIM, Duck-Ho;KIM, Sung-Jin;LEE, Jung-Uck
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.136-147
    • /
    • 2021
  • Autonomous driving-related technologies are developing step by step by applying the degree of driving. It is essential that operational management technology for roads where autonomous vehicles move should also develop in line with autonomous driving technology. However, in the case of road operation management, it is currently managed using only two-dimensional information, showing limitations in the systematic operation management of lane and facility information and maintenance. This study proposed a plan to construct an operation management system architecture capable of 3D spatial information-based operation management by designing a convergence database that can process real-time big data with high-definition road map data. Through this study, when using a high-definition road map based operation management system for lane and facility maintenance in the future, it is possible to visualize and manage facilities, edit and analyze data of multiple users, link various GIS S/W and efficiently process large scale of real-time data.

Analysis of Road Surface Irregularity and Superelevation Using Mobile Mapping System (Mobile Mapping System을 이용한 도로 평탄성과 편경사 분석 연구)

  • KIM, Gi-Chang;YOON, Ha-Su;CHOI, Yun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.155-166
    • /
    • 2019
  • Road infrastructure has increased explosively due to economic development after industrialization and at present road infrastructure is being changed and increased by construction of new roads and maintenance and expansion of existing roads. Such road infrastructure should support safe driving. Road management plays an important role in safe driving. The purpose of this dissertation is to verify predictability of dangerous sections by analyzing road geometrical structure such as surface irregularity and superelevation for some sections in Central Inland Expressway by MMS and present ways of managing roads using MMS. Having analyzed surface irregularity of roads by using MMS, it was found that over 50 percent of all eight sections, targets of this study need betterments and for superelevation, over 50 percent of two sections goes against superelevation standard. Targets of this study are sections that accidents occurred frequently based on history of past accidents and predictability of dangerous sections can be verified through analysis of road geometrical structure using MMS. Using MMS data created by construction of high definition maps which are being undergone for all roads and methods proposed by this study will help investigate dangerous sections efficiently according to road environment. A result of MMS can be used for maintenance of road furniture.

Hybrid Control Strategy for Autonomous Driving System using HD Map Information (정밀 도로지도 정보를 활용한 자율주행 하이브리드 제어 전략)

  • Yu, Dongyeon;Kim, Donggyu;Choi, Hoseung;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.80-86
    • /
    • 2020
  • Autonomous driving is one of the most important new technologies of our time; it has benefits in terms of safety, the environment, and economic issues. Path following algorithms, such as automated lane keeping systems (ALKSs), are key level 3 or higher functions of autonomous driving. Pure-Pursuit and Stanley controllers are widely used because of their good path tracking performance and simplicity. However, with the Pure-Pursuit controller, corner cutting behavior occurs on curved roads, and the Stanley controller has a risk of divergence depending on the response of the steering system. In this study, we use the advantages of each controller to propose a hybrid control strategy that can be stably applied to complex driving environments. The weight of each controller is determined from the global and local curvature indexes calculated from HD map information and the current driving speed. Our experimental results demonstrate the ability of the hybrid controller, which had a cross-track error of under 0.1 m in a virtual environment that simulates K-City, with complex driving environments such as urban areas, community roads, and high-speed driving roads.

Extraction of 3D Objects Around Roads Using MMS LiDAR Data (MMS LiDAR 자료를 이용한 도로 주변 3차원 객체 추출)

  • CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.152-161
    • /
    • 2017
  • Making precise 3D maps using Mobile Mapping System (MMS) sensors are essential for the development of self-driving cars. This paper conducts research on the extraction of 3D objects around the roads using the point cloud acquired by the MMS Light Detection and Ranging (LiDAR) sensor through the following steps. First, the digital surface model (DSM) is generated using MMS LiDAR data, and then the slope map is generated from the DSM. Next, the 3D objects around the roads are identified using the slope information. Finally, 97% of the 3D objects around the roads are extracted using the morphological filtering technique. This research contributes a plan for the application of automated driving technology by extracting the 3D objects around the roads using spatial information data acquired by the MMS sensor.

Lane Extraction through UAV Mapping and Its Accuracy Assessment (무인항공기 매핑을 통한 차선 추출 및 정확도 평가)

  • Park, Chan Hyeok;Choi, Kyoungah;Lee, Impyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Recently, global companies are developing the automobile technologies, converged with state-of-the-art IT technologies for the commercialization of autonomous vehicles. These autonomous vehicles are required the accurate lane information to enhance its reliability by controlling the vehicles safely. Hence, the study planned to examine possibilities of applying UAV photogrammetry of high-resolution images, obtained from the low altitudes. The high-resolution DSM and the ortho-images were generated from the GSD 7cm-level digital images that were obtained and based on the generated data, when the positions information of the roads including the lanes were extracted. In fact, the RMSE of verifying the extracted data was shown to be about 15cm. Through the results from the study, it could be concluded that the low alititude UAV photogrammetry can be applied for generating and updating a high-accuracy map of road areas.

수치지도 제작을 위한 지형ㆍ지물의 경계추출

  • 박운용;차성렬;이동락;김용석
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.433-437
    • /
    • 2003
  • 고해상도 위성영상을 이용하여 수치표고모델(DEM) 및 정사영상을 제작해서 수치지도의 갱신 및 지형공간정보체계의 자료기반으로써 활용할 수 있다. 본 연구에서는 Sobel 연산자를 이용하여 경계추출을 행한 후 스크린 디지타이징 방법으로 경계선을 추출하였다 이렇게 추출된 벡터자료와 기존수치지도와의 중첩을 통해서 건물, 도로, 임야의 평균위치오차를 분석해 보았다. 평균위치오차가 공공측량의 작업규정에 대한 1 : 5,000 수치지도 제작의 허용오차범위에는 들지 못하였지만, 특정 부분의 지형·지물의 경우에는 수정, 보완이 가능한 것으로 나타났다. 그리고, 산악지역 보다는 도심지에서의 경계추출이 뚜렷하기 때문에 위치정밀도가 향상됨을 알 수 있었다.

  • PDF