• 제목/요약/키워드: 정량 연관규칙

검색결과 18건 처리시간 0.023초

텍스트 마이닝 기법을 활용한 환경공간정보 연구 동향 분석 (Analysis of the Research Trends by Environmental Spatial-Information Using Text-Mining Technology)

  • 오관영;이명진;박보영;이정호;윤정호
    • 한국지리정보학회지
    • /
    • 제20권1호
    • /
    • pp.113-126
    • /
    • 2017
  • 본 연구의 목적은 빅데이터 분석 기법 중 하나인 텍스트 마이닝 기법을 활용하여 환경 분야의 환경공간정보 활용 연구 동향을 정량적으로 분석하는 것이다. 분석에 활용된 자료는 NDSL (National Digital Science Library)을 통하여 획득한 국내 논문으로 총 869편을 대상으로 하였다. 논문에서 추출된 단어들은 "환경일반", "기후", "대기", 등 환경 분야 10개, "위성영상", "수치지도", "재난재해" 등 환경공간정보 20개로 설정된 분류체계에 따라 재분류 되었다. 재분류된 분류 키워드를 통해, 논문에서 해당 키워드의 출현 빈도 및 시계열 변화를 파악하였으며, 상호 간 연관분석을 수행하였다. 첫째, 빈도 분석 결과 환경 분야에서는 "환경일반"(40.85%)이 환경공간정보에서는 "위성영상" (24.87%)이 가장 높은 활용 빈도를 나타냈다. 둘째, 환경 분야에 대한 시계열 분석 결과 1996년부터 2000년까지는 "기후"에 대한 연구 비중이 높았으나, 2001년부터는 "환경일반"에 대한 연구가 증가하였다. 환경공간정보에서는 "위성영상"에 대한 수요가 전 기간에 걸쳐 가장 높았으며, 활용 비율 또한 점차적으로 증가하고 있었다. 셋째, 환경 분야와 환경공간정보에 대한 연관분석 결과 총 80개의 연관 규칙이 생성되었으며, 환경 분야 중 "환경일반"이 "위성영상", "전자지도" 등 총 17개의 환경공간정보와 가장 많은 수의 연관 규칙을 생성하였다.

의미정보모델 구축을 위한 색채정보의 수집과 정량적 분석 (Collecting and Analyzing Color Information for Constructing Semantic Information Model)

  • 류기곤;선동언;김현철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.232-235
    • /
    • 2011
  • 지식표현은 일반적으로 논리, 규칙, 프레임 또는 의미망 형태로 표현되며, 최근에는 의미망을 이용한 온톨로지 형태로 표현되고 있다. 이러한 지식표현 방법은 개념을 설명하는 문맥적인 정보나 개념들 간의 구조적인 정보를 이용하여 개념에 대한 지식을 논리적으로 표현하는데 중점을 두었다. 하지만, 지식표현에 사용되는 의미정보는 사람에 의해 수집되고 정제되기 때문에 많은 시간, 비용 및 인력이 필요하다는 한계가 있고, 새로운 의미를 추가하거나 기존의 의미를 수정하는 것이 매우 어렵다는 한계가 있다. 색채는 특정 대상이나 개념에 대한 의미, 연상, 상징 등 객관적인 특징 뿐 아니라 시대, 나라, 문화와 같은 사회적 배경을 반영하기 때문에, 정보를 제공하고 감성을 전달하는 효과적인 수단으로 사용되고 있다. 이에 본 논문은, 색채를 이용한 의미정보모델 구축을 위해, 색채정보를 수집하고 정량적으로 분석하는 방법을 제안한다. 긍정/부정/불안/중립으로 구성된 감성어휘 273개를 이용하여 이미지를 수집한 결과 총 130,944개의 이미지를 수집하였다. 이미지에는 여러 가지 사물, 행동, 배경, 색채 등 다양한 정보가 혼재되어 있어 감성어휘와 연관된 색채를 구별하기 어렵기 때문에 이미지를 직관적으로 설명할 수 있는 사용자 태그를 별도로 수집하였다. 태그는 총 2,836,395개를 수집하였고 각 이미지와 그룹에서의 가중치를 구하였다. 태그의 가중치를 통해 이미지가 그룹 내에서 갖는 중요도를 판별하였고, 각 그룹 별로 상위 30%의 이미지를 추출하여 대표 색채를 분석하였다.

텍스트 마이닝 기법을 이용한 환경 분야의 ICT 활용 연구 동향 분석 (A Study on Environmental research Trends by Information and Communications Technologies using Text-mining Technology)

  • 박보영;오관영;이정호;윤정호;이승국;이명진
    • 대한원격탐사학회지
    • /
    • 제33권2호
    • /
    • pp.189-199
    • /
    • 2017
  • 본 연구는 텍스트 마이닝 기법을 활용하여 환경 분야에서 ICT의 활용 연구동향을 정량적으로 분석하였다. 이를 위해 환경 분야 키워드 38개, ICT 관련 키워드 16개를 바탕으로 국가과학기술정보센터(NDSL)에서 최근 20년(1996년-2015년)의 논문 359편을 수집하였다. 해당 논문을 대상으로 환경 분야 및 ICT 관련 자연어를 처리하여 말뭉치(Corpus)단위로 분류체계를 재구성하였다. 전술된 분류체계의 키워드를 바탕으로 텍스트 마이닝 분석 기법인 빈도 분석, 키워드 분석, 키워드 간 연관규칙을 확인하였다. 그 결과 '환경 일반' 및 '기후' 분야의 키워드 출현 빈도가 전체의 77 %, ICT는 '공공융합서비스' 및 '산업융합서비스'가 약 30 %의 비율을 차지하였다. 시계열 분석을 통해 환경 분야에서의 ICT 활용 연구는 최근 5년(2011년-2015년)사이에 급증하여 과거(1996년-2010년)과 비교하여 약 2배 이상 관련 연구가 증가된 것으로 나타났다. 키워드 간 연관 규칙을 생성하여 환경 분야를 기준으로 나타내었을 때, '환경 일반'은 16개, '기후'는 '14'개의 ICT 기반 기술을 주로 활용하고 있는 것으로 확인하였다.

Eco-System: 클라우드 컴퓨팅환경에서 REC 가격예측 시뮬레이션 (Eco-System: REC Price Prediction Simulation in Cloud Computing Environment)

  • 조규철
    • 한국시뮬레이션학회논문지
    • /
    • 제23권4호
    • /
    • pp.1-8
    • /
    • 2014
  • 클라우드 컴퓨팅은 정보의 다양성과 빅데이터를 IT자원을 이용하여 처리할 수 있는 컴퓨팅 개념이다. 정부는 신재생에너지를 활용한 전력생산을 장려하기 위해 RPS를 시행하였고 시스템을 구축하여 지리적으로 분산되어 있는 빅데이터를 수집하여 운영하고 있다. RPS제도를 이행하는 발전사업자들은 의무할당량 중 REC 부족분을 타 발전사업자들로부터 REC를 구매하여 조달해야 한다. REC는 자율시장에 근거하여 거래되고 있고, 매매가격의 편차가 크기 때문에 RPS 빅데이터를 통해 형평성있는 REC가격을 예측할 필요가 있다. 본 연구에서는 부정확한 가격추이와 규칙을 정량적으로 표현하여, 클라우드 환경에서 퍼지기반으로 REC가격을 예측하는 방법을 제안한다. 클라우드 환경에서 RPS 빅데이터를 통한 상호연관성과 가격결정에 영향을 주는 변수들에 대한 분석이 가능하고 시뮬레이션을 통해 REC 가격을 예측할 수 있다. 클라우드 환경에서 퍼지로직은 매물수량과 매매가격을 이용하여 투명성있는 REC 가격을 예측하고 장기적으로 수렴된 가격을 제시할 것이다.

데이터마이닝을 통한 방위산업기술 분석 연구: 특허분석을 중심으로 (Study for Analyzing Defense Industry Technology using Datamining technique: Patent Analysis Approach)

  • 손창호
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.101-107
    • /
    • 2018
  • 최근 우리나라의 방위산업은 고도의 발전을 해왔고 국방비 중에서 국방 R&D 예산도 점차적으로 증가하고 있다. 하지만 방위산업기술에 대한 객관적인 분석 없이는 효과적인 국방 R&D 활동이 제한적이고 자칫 국방예산이 비효율적으로 사용될 수 있다. 따라서 본 논문은 현재 주로 실시하고 있는 전문가들의 의견을 반영한 정성적인 방위산업기술의 분석에 더해서 정량적인 방법으로 방위산업기술을 객관적으로 분석함으로써 국방예산의 효율적 사용과 더 나아가서는 세계시장에서의 경쟁 우위를 달성하고자 하였다. 더구나 4차 산업혁명의 키워드 중의 하나인 빅데이터 분석 방법을 국방산업기술에 적용해서 객관적이고 체계적으로 국방산업기술의 특성과 공백기술을 파악하기 위한 특허분석 방법을 제안한다. 제안된 방법은 여러 국방산업기술 중에서 화력분야의 기술에 적용하여 사례분석을 수행하였다. 그 과정은 우선 방위산업진흥원의 방위 산업기업의 분류에서 화력에 관련된 10개 국내 기업의 특허를 Kipris를 통해서 수집하고 이 중에서 IPC 코드를 활용하기 위해서 이를 전처리하여 데이터 매트릭스를 구축하였다. 그리고 R 프로그램을 활용하여 데이터마이닝 기법 중에서 각 항목 간 연관성을 파악할 수 있는 연관규칙마이닝을 수행하였다. 이를 통해서 화력분야의 각 기술에 대한 지지도, 신뢰도, 향상도 값을 도출하고 이를 해석하여 결론을 제시하였다. 따라서 본 논문은 막대한 국방예산의 효율적인 사용과 국방산업기술의 경쟁력 제고에 도움을 줄 수 있을 것이라고 판단된다.

대구·경북지역 대장직장암 환자의 식생활 태도와 영양소 섭취에 관한 환자-대조군 연구 (A Case-Control Study on Attitudes to Dietary Life and Nutrient Intakes of Colorectal Cancer Patients in Daegu·Gyeongbuk Area)

  • 최영은;김은정
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.621-626
    • /
    • 2020
  • 한국의 대장암 발병율은 점차 증가하고 있으며 대장암 발생은 식생활과 밀접하게 연관이 있는 것으로 보고되고 있다. 대장암 발생에 영향을 미칠 수 있는 식생활 태도 및 영양적 위험요인을 연구하기 위해 대구·경북지역에 거주하는 최근 1년 이내에 대장직장암으로 진단받은 환자 34명과 소화기계 질환이 없는 대조군 51명을 대상으로 식생활태도 및 반정량적 식품섭취빈도조사를 통한 영양섭취상태를 비교 분석하였다. 그 결과, 식사의 규칙성 및 식품섭취의 다양성은 대조군이 대장직장암 환자에 비해 높았으며 대장암 환자는 동식물성 단백질 섭취와 튀긴 음식, 그리고 녹황색 채소 및 과일류의 섭취가 대조군에 비해 높게 나타났다. 영양섭취분석에서는 대장직장암 환자가 대조군에 비해 비타민 A, E, K, C, 나트륨, 마그네슘, 요오드, 콜레스테롤의 섭취량이 유의적으로 높았으며 그 중 비타민 K와 나트륨 섭취는 대장직장암 발생의 위험요인으로 분석되었다. 향후 보다 많은 수의 연구대상자들을 통한 임상연구를 통하여 이들 영양소와 대장직장암 발생과의 상관관계를 확인하고 적절한 영양 교육을 시행한다면 대장직장암 발생의 위험을 예방하는데 도움이 될 것으로 사료된다.

주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법 (Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity)

  • 김혜진;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.299-306
    • /
    • 2022
  • 최근 로봇이나 설비, 회로 등에 센서 내장이 보편화 되고, 측정된 센서 데이터를 학습하여 기기의 고장을 진단하기 위한 연구가 활발하게 수행되고 있다. 이러한 고장 진단 연구는 고장 상황이나 종류를 예측하기 위한 분류(Classification) 모델 개발과 정량적으로 고장 상황을 예측하기 위한 회귀(Regression) 모델 개발로 구분된다. 분류 모델의 경우, 단순히 고장이나 결함의 유무(Class)를 확인하는 반면, 회귀 모델은 무수히 많은 수치 중에 하나의 값(Value)을 예측해야 하므로 학습 난이도가 더 높다. 즉, 입력과 출력을 대응시켜 고장을 예측을 할 때, 유사한 입력값이 동일한 출력을 낸다고 결정하기 어려운 불규칙한 상황이 다수 존재하기 때문이다. 따라서 본 논문에서는 주기성을 지닌 입출력 데이터에 초점을 맞추어, 입출력 관계를 분석하고, 슬라이딩 윈도우 기반으로 입력 데이터를 패턴화 하여 입출력 데이터 간의 규칙성을 확보하도록 한다. 제안하는 방법을 적용하기 위해, 본 연구에서는 MMC(Modular Multilevel Converter) 회로 시스템으로부터 주기성을 지닌 전류, 온도 데이터를 수집하여 ANN을 이용하여 학습을 진행하였다. 실험 결과, 한 주기의 2% 이상의 윈도우를 적용하였을 때, 적합도 97% 이상의 성능이 확보될 수 있음을 확인하였다.

이미지 색상, 명도, 채도 감성컴퓨팅의 유사성 검증 연구 (Image Color, Brightness, Saturation Similarity Validation Study of Emotion Computing)

  • 이연란
    • 만화애니메이션 연구
    • /
    • 통권40호
    • /
    • pp.477-496
    • /
    • 2015
  • 사람의 이미지 감성인식은 각기 다른 성향으로 표현된다. 현재는 감성인식을 객관적으로 평가하려는 감성컴퓨팅 연구가 활발하게 연구되고 있다. 그렇지만 기존의 감성컴퓨팅 연구는 실행에 많은 문제점을 갖고 있다. 첫째, 감성인식 면에서 비객관적이고, 부정확하다. 둘째, 감성인식의 상관관계가 불명확한 점이다. 그리하여 본 연구의 필요성으로 이미지 감성의 규칙성을 실험하여 감성컴퓨팅 방식으로 제어하고자 한다. 또한 본 연구의 목적으로 감성인식을 숫자화하고, 객관화하는 이미지 감성컴퓨팅 시스템 방식을 적용하고, 사람의 감성과의 유사 정도를 비교한다. 이미지 감성컴퓨팅 시스템의 주요 특징은 감성인식을 숫자화 된 디지털 형식으로 계산한다. 그리고 감성컴퓨팅의 연구배경은 감성을 디지털화하는 James A. Russell의 핵심 효과(Core Affect)를 활용한다. 핵심 감성으로 쾌정도(X축)인 쾌와 불쾌, 긴장도(Y축)인 긴장과 이완의 감성축이고, 감성컴퓨팅 연구에 적용한다. 감성축은 연관된 대표감성으로 아주 기쁜, 흥분, 의기양양, 행복한, 자족, 고요한, 여유로운, 조용한, 피곤한, 무기력한, 우울한, 슬픈, 화가 난, 스트레스, 불안, 긴장된 감성의 16개로 구분하여 감성컴퓨팅에 적용한다. 본 연구의 과정은 이미지 감성컴퓨팅 계산식의 핵심인 색채 요소를 활용하여 색상, 명도, 채도를 감성속성요소로 적용한다. 감성속성요소는 중요도인 가중치를 적용하여 비율을 계산하고, 쾌정도(X축)와 긴장도(Y축)의 감성점수로 측정한다. 다시 교차된 감성점을 바탕으로 감성원으로 확장하고, 포함된 대표감성크기로 상위 5위인 주요대표감성으로 선별한다. 또한 사람의 이미지 감성을 16개 대표감성점수로 측정하고, 상위 5위의 대표감성으로 구분한다. 연구결과 감성컴퓨팅의 주요대표감성과 사람의 감성인식의 주요대표 감성을 비교하여 일치하는 대표감성수에 따라 감성의 유사 정도를 검증한다. 감성컴퓨팅 유사성 실험 결과 주요대표감성의 평균 일치율은 51%이고, 2.5개의 대표감성이 사람의 감성인식과 일치했다. 본 연구를 통해 감성컴퓨팅 계산 방식과 사람 감성인식의 유사 정도를 측정했고, 감성계산식의 객관적인 평가기준을 제시했다. 향후 연구에서는 좀 더 높은 일치율 향상의 방안과 감성계산식의 가중치 연구가 유지되어야 할 것이다.