Collecting and Analyzing Color Information for Constructing Semantic Information Model

의미정보모델 구축을 위한 색채정보의 수집과 정량적 분석

  • Lyu, Ki-Gon (Dept. of Computer Science Education, Korea University) ;
  • Sun, Dong-Eon (Dept. of Computer Science Education, Korea University) ;
  • Kim, Hyeon-Cheol (Dept. of Computer Science Education, Korea University)
  • 류기곤 (고려대학교 컴퓨터교육학과) ;
  • 선동언 (고려대학교 컴퓨터교육학과) ;
  • 김현철 (고려대학교 컴퓨터교육학과)
  • Published : 2011.06.29

Abstract

지식표현은 일반적으로 논리, 규칙, 프레임 또는 의미망 형태로 표현되며, 최근에는 의미망을 이용한 온톨로지 형태로 표현되고 있다. 이러한 지식표현 방법은 개념을 설명하는 문맥적인 정보나 개념들 간의 구조적인 정보를 이용하여 개념에 대한 지식을 논리적으로 표현하는데 중점을 두었다. 하지만, 지식표현에 사용되는 의미정보는 사람에 의해 수집되고 정제되기 때문에 많은 시간, 비용 및 인력이 필요하다는 한계가 있고, 새로운 의미를 추가하거나 기존의 의미를 수정하는 것이 매우 어렵다는 한계가 있다. 색채는 특정 대상이나 개념에 대한 의미, 연상, 상징 등 객관적인 특징 뿐 아니라 시대, 나라, 문화와 같은 사회적 배경을 반영하기 때문에, 정보를 제공하고 감성을 전달하는 효과적인 수단으로 사용되고 있다. 이에 본 논문은, 색채를 이용한 의미정보모델 구축을 위해, 색채정보를 수집하고 정량적으로 분석하는 방법을 제안한다. 긍정/부정/불안/중립으로 구성된 감성어휘 273개를 이용하여 이미지를 수집한 결과 총 130,944개의 이미지를 수집하였다. 이미지에는 여러 가지 사물, 행동, 배경, 색채 등 다양한 정보가 혼재되어 있어 감성어휘와 연관된 색채를 구별하기 어렵기 때문에 이미지를 직관적으로 설명할 수 있는 사용자 태그를 별도로 수집하였다. 태그는 총 2,836,395개를 수집하였고 각 이미지와 그룹에서의 가중치를 구하였다. 태그의 가중치를 통해 이미지가 그룹 내에서 갖는 중요도를 판별하였고, 각 그룹 별로 상위 30%의 이미지를 추출하여 대표 색채를 분석하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단