• Title/Summary/Keyword: 정동역학

Search Result 40, Processing Time 0.026 seconds

Development of Teleoperation System with a Forward Dynamics Compensation Method for a Virtual Robot (가상 슬레이브 정동역학 보정에 기반한 원격제어 시스템 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.322-329
    • /
    • 2018
  • Teleoperation is defined with a master device that gives control command and a slave robot in a remote site. In this field, it is common that a human operator executes and experiences teleoperation with a virtual slave, and preliminary learns dynamic characteristic and network environment from both agents. Generally, a virtual slave has neglected forward dynamics and its kinematic model has been implemented in computer graphics. This makes a operator to experience actual feelings. This paper proposes a dynamic teleoperation model in which a robotic forward model is applied. Also, a novel compensation method is proposed to reduce the numerical error problems in forward dynamics caused by low control sampling rate. Finally, its results will be compared to the teleoperation in an actual environment.

Development of the Kinematic and Dynamic Analysis Program for the Design of the Folding Door Mechanism (폴딩 도어 메커니즘 설계를 위한 기구학 및 동역학 해석 프로그램 개발)

  • 서명원;권성진;심문보;조기용;이은표;박승영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.187-193
    • /
    • 2002
  • Since the bus is regarded as the one of the most public transportation systems, research on the safety and facilities of the bus has been increased actively in recent years. In this paper, we concern the design of the bus door mechanism that is composed of many linkages and actuators(or motors). In particular, the folding door mechanism is representative system installed in most of urban buses. To design the folding door mechanism, we construct the kinematic and dynamic analysis model fur computer simulation. Also, the dynamic analysis is accomplished by both direct dynamics and inverse dynamics. Since the folding door mechanism has many design variables, the analysis program is developed to perceive kinematic and dynamic characteristics according to the design variables and simulation conditions.

A Study ef Biomechanical Response in Human Body during Whole-Body Vibration through Musculoskeletal Model Development (전신 진동운동기 사용시 인체에 대한 생체역학적 특성 분석을 위한 가상 골격계 모델의 개발 및 검증)

  • Choi, Hyun-Ho;Lim, Do-Hyung;Hwang, Seon-Hong;Kim, Young-Ho;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.155-163
    • /
    • 2008
  • This study investigated biomechanical response through the 3-dimensional virtual skeletal model developed and validated. Ten male subjects in standing posture were exposed to whole body vibrations and measured acceleration on anatomical of interest (head, $7^{th}$ cervical, $10^{th}$ thoracic, $4^{th}$ lumbar, knee joint and bottom of the vibrator). Three dimensional virtual skeletal model and vibration machine were created by using BRG LifeMOD and MSC.ADAMS. The results of forward dynamic analysis were compared with results of experiment. The results showed that the accuracy of developed model was $73.2{\pm}19.2%$ for all conditions.

Humanoid Robot Control Using Marionette-type Motion Conversion (마리오네트 타입 인간 동작 변환 기법을 이용한 휴머노이드 로봇 제어)

  • Yoo, Jung-Min;Ra, Sung-Kwon;Kim, Eun-Tae;Kim, Chang-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1801-1802
    • /
    • 2008
  • 마리오네트는 끝단에 연결된 줄을 이용하여 사용자가 제어 할 수 있는 인형이다. 본 연구는 마리오네트 원리를 적용하여 인간의 동작을 통해 로봇을 직접 제어할 수 있는 방법을 제안한다. 이를 위해 인간 손과 로봇 손의 사이에 가상의 줄(Virtual Elastic strip)이 연결되어 있는 모델을 사용한다. 실시간으로 측정되는 인간의 동작에 따라 가상 줄의 길이가 변하게 되고 가상 힘이 발생된다. 이 가상 힘을 고려하여 로봇 팔의 정동역학(Forward dynamics) 해를 구한 후, 제어를 위한 로봇의 각 관절값을 얻게 된다. 제안한 방법을 이용하여 인간 동작을 실시간으로 가상 로봇의 동작으로 변환하고 제어하는 실험을 수행하였다.

  • PDF

Molecular Dynamics Simulation on Hydrogen Adsorption into Catenated Metal Organic Frameworks (분자 동역학을 이용한 상호 관통된 Metal Organic Framework의 수소 흡착에 관한 연구)

  • Lee, Tae-Bum;Kim, Dae-Jin;Jung, Dong-Hyun;Kim, Ja-Heon;Choi, Seung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.9-12
    • /
    • 2006
  • We performed molecular dynamics simulations on the conventional MOF, IRMOF-14 and the catenated MOF with two MOF chains, IRMOF13, to find out rational design and synthetic strategies toward efficient hydrogen storage materials. The molecular dynamics calculations were done using Universal force fields and the analysis of result was performed during the NVE dynamics after preliminary NVT dynamics at 77K. The results showed the density of adsorbed hydrogen molecules was increased in the various pores created by catenation of MOFs while the large amount of volume in conventional MOF was not effectively utilized to store hydrogen. Those calculation results commonly showed the proper control of pore si Be for hydrogen storage into MOF by catenation would be one of the efficient ways to increase hydrogen capacity of MOFs.

  • PDF

Effect of Epidural Block under General Anesthesia on Pulse Transit Time (전신마취시 경막외 차단술 병용이 맥파전달시간에 미치는 영향)

  • Choi, Byeong-Cheol;Kim, Seong-Min;Jung, Dong-Keun;Kim, Gi-Ryon;Lee, He-Jeong;Jeon, Gey-Rock
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.262-267
    • /
    • 2005
  • Epidural block under general anesthesia has been widely used to control postoperative pain. In this anesthetic state many hemodynamic parameters are changed. Moreover pulse transit time is influenced by this memodynamic change. m change in the finger and the toe due to relaxation of arterial wall muscle after general anesthesia and epidural block under general anesthesia. This study, in the both general anesthesia and epidural block under general anesthesia, ${\Delta}PTT$ of the toe and of the finger are measured. In addition, ${\Delta}PTT$(toe-finger) of the epidural block under general anesthesia and of the general anesthesia were compared.

A Study on the Influence of Helicopter Main Rotor Inflow Model upon Launched Rocket Trajectory and Safe Launch Envelope (헬리콥터 유입류 모델에 따른 발사된 로켓의 비행궤적 영향성 및 안전발사 기동영역 해석 연구)

  • Yang, Chang Deok;Jung, Dong Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.70-77
    • /
    • 2019
  • This study presents the numerical investigation of the trajectory of rocket launched from a helicopter. The nonlinear mathematical model of armed configuration of UH-60 helicopter was developed while Hydra 70 unguided rocket was modeled to simulate the rocket behavior. The effects of various inflow models on the launched rocket trajectory are obtained. Similarly, rocket launch simulation was performed to determine the unsafe flight maneuver condition where the rocket trajectory is critically close to the helicopter main rotor tip path plane.