• 제목/요약/키워드: 정규화 입력 데이터

검색결과 92건 처리시간 0.035초

다변량 입력이 딥러닝 기반 저수율 예측에 미치는 영향 분석과 중장기 예측 방안 (Analyzing the Impact of Multivariate Inputs on Deep Learning-Based Reservoir Level Prediction and Approaches for Mid to Long-Term Forecasting)

  • 박혜승;윤종욱;이호준;양현호
    • 정보처리학회 논문지
    • /
    • 제13권4호
    • /
    • pp.199-207
    • /
    • 2024
  • 지역 저수지들은 농업용수 공급의 중요한 수원공으로 가뭄과 같은 극단적 기후 조건을 대비하여 안정적인 저수율 관리가 필수적이다. 저수율 예측은 국지적 강우와 같은 지역적 기후 특성뿐만 아니라 작부시기를 포함하는 계절적 요인 등에 크게 영향을 받기 때문에 적절한 예측 모델을 선정하는 것만큼 입/출력 데이터 간 상관관계 파악이 무엇보다 중요하다. 이에 본 연구에서는 1991년부터 2022년까지의 전라북도 400여 개 저수지의 광범위한 다변량 데이터를 활용하여 각 저수지의 복잡한 수문학·기후학적 환경요인을 포괄적으로 반영한 저수율 예측 모델을 학습 및 검증하고, 각 입력 특성이 저수율 예측 성능에 미치는 영향력을 분석하고자 한다. 신경망 구조에 따른 저수율 예측 성능 개선이 아닌 다변량의 입력 데이터와 예측 성능 간의 상관관계에 초점을 맞추기 위하여 실험에 사용된 예측 모델로 합성곱신경망 또는 순환신경망과 같은 복잡한 형태가 아닌 완전연결계층, 배치정규화, 드롭아웃, 활성화 함수 등의 조합으로 구성된 기본적인 순방향 신경망을 채택하였다. 추가적으로 대부분의 기존 연구에서는 하루 단위의 단기 예측 성능만을 제시하고 있으며 이러한 단기 예측 방식은 10일, 한 달 단위 등 중장기적 예측이 필요한 실무환경에 적합하지 않기 때문에, 본 연구에서는 하루 단위 예측값을 다음 입력으로 사용하는 재귀적 방식을 통해 최대 한 달 뒤 저수율 예측 성능을 측정하였다. 실험을 통해 예측 기간에 따른 성능 변화 양상을 파악하였으며, Ablation study를 바탕으로 예측 모델의 각 입력 특성이 전체 성능에 끼치는 영향을 분석하였다.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.1-7
    • /
    • 2024
  • 본 논문은 MNIST 데이터셋을 활용한 손글씨 숫자 인식에서 합성곱 신경망(CNN)과 배치정규화(BN)를 결합한 모델을 제안한다. LeCun et al.의 LeNet-5 모델의 성과를 뛰어넘는 것을 목표로 6계층 신경망 구조를 설계하였다. 제안된 모델은 28×28 픽셀 이미지를 입력으로 받아 합성곱, 맥스 풀링, 완전연결계층을 거쳐 처리하며, 특히 배치정규화계층을 도입하여 학습 안정성과 성능을 향상시켰다. 실험에서는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지를 사용하였으며, Momentum 최적화 알고리즘을 적용하였다. 모델 구성에서는 30개의 필터, 필터 사이즈 5×5, 패딩 0, 스트라이드 1을 사용하였고, ReLU 활성화 함수를 채택하였다. 훈련 과정에서는 미니배치 사이즈 100, 총 20 에포크, 학습률 0.1로 설정하였다. 결과적으로 제안된 모델은 99.22%의 테스트 정확도를 달성하여 LeNet-5의 99.05%를 상회하였으며, F1-score 0.9919를 기록하여 모델의 성능을 입증하였다. 또한, 본 논문에서 제안한 6계층 모델은 LeCun et al.의 LeNet-5(7계층 모델)와 Ji, Chun and Kim(10계층 모델)이 제안한 모델보다 더 단순한 구조로 모델의 효율성을 강조하였다. 본 연구의 결과는 AI 비전 검사기 등 실제 산업 응용에서 활용 가능성을 보여주며, 특히 스마트팩토리에서 부품의 불량 상태를 판별하는 데 효과적으로 적용될 수 있을 것으로 기대된다.

LSTM을 이용한 주가예측 모델의 학습방법에 따른 성능분석 (A Performance Analysis by Adjusting Learning Methods in Stock Price Prediction Model Using LSTM)

  • 정종진;김지연
    • 디지털융복합연구
    • /
    • 제18권11호
    • /
    • pp.259-266
    • /
    • 2020
  • 과거 인공지능 분야에서는 지식 기반의 전문가 시스템 및 머신러닝 알고리즘들을 금융 분야에 적용하는 연구가 꾸준하게 수행되어 왔다. 특히 주식에 대한 지식 기반의 시스템 트레이딩은 이제 보편화되었고, 최근에는 대용량 데이터에 기반한 딥러닝 기술을 주가 예측에 적용하기 시작했다. 이중 LSTM은 시계열 데이터에 대한 검증된 모델로서 주가 예측에도 적용되고 있다. 본 논문에서는 주가 예측 모델로서 LSTM을 적용할 때 성능향상을 위해 고려해야 할 복잡한 매개변수 설정과 적용 함수들에 대해 적합한 조합 방법을 제안하도록 한다. 크게 가중치와 바이어스에 대한 초기화 대상과 설정 방법, 과적합을 피하기 위한 정규화 적용 대상과 설정 방법, 활성화 함수 적용 방법, 최적화 알고리즘 선택 등을 제시한다. 이 때 나스닥 상장사들에 대한 대용량 데이터를 바탕으로 각각의 방법들을 적용하여 정확도를 비교하면서 평가한다. 이를 통해 주가 예측을 위한 LSTM 적용 시 최적의 모델링 방법을 실증적인 형태로 제안하여 현실적인 시사점을 갖도록 한다. 향후에는 입력 데이터의 포맷과 길이, 하이퍼파라미터들에 대한 성능평가를 추가 수행하여 주요 설정 항목들의 조합에 대한 일반화 연구를 수행하고자 한다.

PCA와 얼굴방향 정보를 이용한 얼굴인식 (Face recognition using PCA and face direction information)

  • 김승재
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.609-616
    • /
    • 2017
  • 본 논문은 얼굴 인식에 있어 안정적인 인식률을 얻기 위해 입력 영상에 대한 좌우 회전정보를 사용하여 보다 안정적이며 높은 인식률을 내기위한 알고리즘을 제안한다. 제안하는 알고리즘은 웹 카메라 환경에서 얼굴 영상을 입력정보로 사용하여 향상된 인식률을 얻기 위해 영상의 사이즈 축소 및 밝기와 컬러에 대한 정보를 정규화한 후 전처리 과정을 거쳐 얼굴 영역만을 분할 검출한다. 검출된 후보 영역에 대해 주성분분석(PCA)을 적용하여 특징벡터를 구하여 얼굴을 분류한다. 또한 인식률의 오차 범위를 줄이기 위해 입력되는 얼굴 영상에 대한 방향성을 고려하여 좌 우 $45^{\circ}$ 회전 정보를 가진 영상을 대상으로 데이터 셋을 구성하여 PCA로 각각의 특징벡터를 구하였다. 구해진 특징벡터로 안정된 인식률을 얻기 위해 고유공간에 뿌린 후 각각의 특징들을 대상으로 유클리디안(euclidean distant) 거리를 비교하여 최종 얼굴을 인식한다. PCA에 의한 특징벡터는 저차원의 데이터이지만 얼굴을 표현하는데 있어 아무런 문제가 없으며 계산량이 적어 인식 속도도 빠를 수 있다. 본 논문에서 제안하는 방법은 기존의 다른 알고리즘에 비해 빠른 인식과 인식률의 안전성과 정확성을 향상시킬 수 있고 실시간 인식 시스템에도 사용할 수 있다.

ATM 보안 시스템을 위한 모델 인증 알고리즘 (Model Verification Algorithm for ATM Security System)

  • 정헌;임춘환;편석범
    • 대한전자공학회논문지TE
    • /
    • 제37권3호
    • /
    • pp.72-78
    • /
    • 2000
  • 본 연구에서는 ATM 보안 시스템을 위한 DCT와 신경망 기반 모델 인증 알고리즘을 제안한다. CCD 카메라를 이용하여 일정한 조도와 거리에서 30명의 얼굴영상을 획득한 후 데이터 베이스를 구성한다. 모델 인증 실험을 위해 동일인에 대해 학습영상 4장 그리고 실험 영상 4장을 각각 획득한다. 얼굴영상의 에지를 검출한 후 에지 분포에 의해 얼굴영상에서 사각형태로 특징영역을 검출한다. 특징영역에는 눈썹, 눈, 코, 입, 그리고 뺨이 포함된다. 특징영역에 대해 DCT를 수행한 후 대각방향의 계수 합을 구해 특징벡터를 추출한다. 특징벡터는 정규화되어 신경망의 입력 벡터가 된다. 패스워드를 고려하지 않는 경우, 데이터 베이스를 검색한 결과 학습된 얼굴영상에 대해서는 100%의 인증율을 나타내었고 학습되지 않는 얼굴영상의 경우에는92%의 인증률을 나타내었다. 그러나 패스워드를 고려한 경우 모두 100%의 인증율을 보였다.

  • PDF

2차원 QR코드에서 모폴로지 기반의 경계선 검출 방법 (A Morphology Technique-Based Boundary Detection in a Two-Dimensional QR Code)

  • 박광욱;이종연
    • 디지털융복합연구
    • /
    • 제13권2호
    • /
    • pp.159-175
    • /
    • 2015
  • 2차원 QR 코드는 1차원 바코드의 데이터 용량 문제를 극복하였고, 방향성, 오류 정정, 데이터 복원력 등의 장점이 있다. 특히 2차원 바코드 인식에서 주요 이슈는 인식 속도와 정확성이다. 따라서 본 논문에서는 바코드 영역을 검출하기 위한 알고리즘을 제안하며, 제안 방법은 영상 내 관심 영역의 위치를 검출하기 위해 모폴로지 기법을 기반으로 한다. 세부적인 연구내용은 다음과 같다. 첫째, 모폴로지 닫힘(close) 연산을 통해 입력 이미지에서 QR Code의 바코드 영역을 검출한다. 둘째, 경계선 검출을 통해 바코드 영역의 외곽선들을 검출한다. 셋째, 검출된 네 개의 외곽 교차점인 네 점을 추출한 후 역 투시변환을 통하여 2차원 바코드의 정사각형 모양으로 정규화 한다. 결과적으로 본 논문의 연구결과는 다양한 조명상태이나 영상에 강한 왜곡이 있는 경우에도 좋은 성능을 나타내며, 영역 검출율은 94.8%, 인식률은 92.3%로 기존연구들보다 안정된 바코드 검출 및 인식 성능을 보여주고 있다.

온실 내 환경데이터 분석을 통한 파프리카 온실의 식별 (Identification of Sweet Pepper Greenhouse by Analysis of Environmental Data in Greenhouse)

  • 김나은;이경근;이덕현;문병은;박재성;김현태
    • 생물환경조절학회지
    • /
    • 제30권1호
    • /
    • pp.19-26
    • /
    • 2021
  • 본 연구에서는 같은 지역에 위치한 온실 3곳의 식별을 위해 통계적인 방법으로 분류를 하고자 주성분 분석(PCA)과 선형 판별 분석(LDA)을 수행하였다. 온실 내의 환경데이터는 같은 지역의 온실 3곳을 대상으로 4월1일부터 4월28일 총4주간 1시간 간격으로 수집된 값을 사용하였다. 데이터를 분석하기 전, 데이터 정규화를 시키는 전처리를 거쳤으며, 전체의 80%인 훈련자료(training data)와 20%인 테스트 자료(test data)로 나누어 분석을 수행하였다. 분석을 수행한 결과, PC1은 57.51%의 설명력으로 PC1 = 0.7118112 × Tem. -0.6830065 × Humi. -0.1637892 × CO2.의 식을 가지며, LD1은 67.06%의 설명력으로 LD1 = 0.8622565 × Tem. -0.1805741 × Humi. + 1.4018140 × CO2. + 0.03040701의 식을 가지는 것으로 나타났다. 이렇게 미리 분류시켜놓은 온실의 데이터를 바탕으로 새로운 환경의 데이터를 입력하였을 때 특정 그룹으로의 분류가 가능함으로써 데이터의 성향을 파악할 수 있다. 이러한 데이터는 식별을 용이하게 함으로써 데이터의 활용도를 높여주는 방법이라고 판단된다.

스마트폰 영상에서의 개선된 실시간 눈동자 검출 방법 (An Enhanced Method for Detecting Iris from Smartphone Images in Real-Time)

  • 김성훈;한기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권9호
    • /
    • pp.643-650
    • /
    • 2013
  • 본 논문은 스마트폰 영상의 실시간 눈동자 검출에서 허프 원 변환 연산의 연산량 축소를 통한 속도 및 검출율 개선 방법을 제안한다. 눈동자를 검출하기 위해서는 입력 영상에서 얼굴과 눈을 검출하고, 눈 영역의 크기에 따라 눈동자의 크기가 변하는 것을 방지하기 위해 일정크기로 눈 영역을 정규화하며, 다양한 조명환경에서 눈동자가 검출이 가능하도록 히스토그램 평활화를 실시하고, 눈의 양쪽 끝점간의 거리를 구하여 영상에서의 실제 눈동자의 크기를 포함할 수 있는 최소한의 눈동자 크기 범위를 계산하여 허프 원 변환에 적용함으로써 연산량을 최소화 하였다. 제안한 방법을 밝은 조명과 어두운 조명에서 실험한 결과 기존 방법들과 비교하여 눈동자 검출 속도는 40% 이상, 검출율은 14% 이상 향상된 것을 보였다.

스테레오 영상에서 임베디드 데이터를 이용한 거리에 따른 얼굴인식률 비교 (Face recognition rate comparison with distance change using embedded data in stereo images)

  • 박장한;남궁재찬
    • 전자공학회논문지CI
    • /
    • 제41권6호
    • /
    • pp.81-89
    • /
    • 2004
  • 본 논문에서는 스테레오 영상에서 좌·우측 영상을 입력 받아 거리변화와 임베디드 데이터를 이용해 얼굴인식률을 PCA알고리듬으로 비교한다. 제안된 방법에서는 RGB컬러공간에서 YCbCr컬러공간으로 변환하여 얼굴영역을 검출한다. 또한 거리변화에 따라 추출된 얼굴영상의 확대 및 축소하여 보다 강건한 얼굴영역을 추출한다. 실험을 통하여 제안된 방법은 30cm∼200cm 정도의 거리에서 기준 거리(100cm)를 설정하고, 스케일 변화에 따른 평균적인 인식결과로 99.05%(100cm)의 인식률을 얻을 수 있었다. 정규화된 크기(92×112)에서 특정영역인 슈퍼 상태를 정의하고, 각각 정의된 슈퍼 상태의 내부요소인 임베디드 데이터만을 추출하여 PCA 알고리듬을 통하여 얼굴인식을 수행하였다. 원본영상을 모두 학습하는 것이 아니라 임베디드 데이터만을 학습시키기 때문에 제한된 영상의 크기(92×112)에서 특정 데이터를 받아들일 수 있으며, 평균적으로 92×112크기의 영상에서는 99.05%, 실험1은 99.05%, 실험2는 98.93%, 실험3은 98.54%, 실험4는 97.85%의 얼굴인식률을 보였다. 따라서 실험을 통하여 제안된 방법은 거리변화율을 적용하면 높은 인식률을 얻을 수 있음을 보였으며, 얼굴정보를 축소할 뿐만 아니라 처리속도도 향상되었다.

Support Vector Machine을 이용한 문맥 민감형 융합 (Context Dependent Fusion with Support Vector Machines)

  • 허경용
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권7호
    • /
    • pp.37-45
    • /
    • 2013
  • 문맥 종속형 융합(CDF, Context Dependent Fusion)은 여러 분류기의 결과를 종합하여 성능을 향상시키는 융합 방법으로 주어진 문제의 문맥을 균일한 여러 문맥으로 나누고 각 문맥에서 문맥 종속적인 융합을 시도함으로써 기존 융합 방법에 비해 향상된 성능을 보여주었다. 하지만 CDF는 학습해야할 파라미터의 개수가 많아 학습 데이터가 적은 경우 잡음에 민감한 문제점이 있으며, 선형 알고리듬이라는 한계로 인해 문맥 추출 및 지역적 융합 과정에서 성능 저하의 원인이 된다. 본 논문에서는 CDF의 문제점을 완화할 수 있는 방법으로 SVM(Support Vector Machine)과 커널 주성분 분석을 이용한 CDF-SVM을 제안하였다. 커널 주성분 분석은 입력 벡터에 비선형 변환을 가함으로써 타원형이 아닌 비정형의 클러스터 생성이 가능하도록 해주며, SVM은 융합과정에서 비선형 경계의 생성을 가능하게 해주어 CDF의 선형성 제약을 극복하도록 해준다. 또한 목적함수에 정규화 항을 추가함으로써 잡음 민감성을 줄이도록 하였다. 제안한 CDF-SVM은 기존 CDF 및 그 변형들에 비해 나은 성능을 보여주었으며 이는 실험 결과를 통해 확인할 수 있다.