• Title/Summary/Keyword: 접합 계면

Search Result 568, Processing Time 0.029 seconds

Acoustic Microscopy Study on Self-Bonded Interface of Amorphous PEEK (Acoustic Microscopy를 이용한 무정형 PEEK의 접합 계면 연구)

  • Jo, Beom-Rae;Kardos, J.L.
    • Korean Journal of Materials Research
    • /
    • v.6 no.9
    • /
    • pp.963-971
    • /
    • 1996
  • 세라믹 강화 복합 재료의 모재로서 사용되는 무정형 PEEK가 보여주는 self-bonding 현상의 주 기구인 PEEK체인들의 확산(interdiffusion)과 뒤엉킴(entanglement)이 일어나기 위하여 PEEK의 접합 면에서 반드시 선행되어 일어나야 하는 젖음성의 정도에 미치는 접합 공정 변수의 영향을 C-mode acoustic microscopy를 이용하여 고찰하였다. 또한 self-bonding 된 PEEK시편들의 전단 변형시 전단 하중의 증가에 따라 일어나는 접합 면에서의 debonding 정도를 측정함으로써 접합 면에서 일어나는 파괴 거동을 관찰하였다. 각각의 접합 조건에서의 젖음성의 정도는 시간과 압력의 증가에 따라 다소 증가함을 보여 주었으나, 접합 온도와는 거의 무관함을 보여 주었다. 또한 전단 파괴 시험시 각각의 접합 조건 하에서 개발된 self-bonding강도의 80%-90%이상의 전단 하중이 가해진 후부터 debonding이 시작되어, 이 후 하중이 증가함에 따라 급속도로 진행되어 파괴가 일어남을 알 수 있었다.

  • PDF

Evaluating Interfacial Adhesion Properties of Pt/Ti Thin-Film by Using Acousto-Optic Technique (Acousto-Optic 기법을 이용한 Pt/Ti 박막 계면의 접합특성 평가)

  • Park, Hae-Sung;Didie, David;Yoshida, Sanichiro;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.188-194
    • /
    • 2016
  • We propose an acousto-optic technique for the nondestructive evaluation of adhesion properties of a Pt/Ti thin-film interface. Since there are some problems encountered when using prevailing techniques to nondestructively evaluate the interfacial properties of micro/nano-scale thin-films, we applied an interferometer that combined the acoustic and optical methods. This technique is based on the Michelson interferometer but the resultant surface of the thin film specimen makes interference instead of the mirror when the interface is excited from the acoustic transducer at the driving frequency. The thin film shows resonance-like behavior at a certain frequency range, resulting in a low-contrast fringe pattern. Therefore, we represented quantitatively the change in fringe pattern as a frequency spectrum and discovered the possibility that the interfacial adhesion properties of a thin film can be evaluated using the newly proposed technique.

Effects of Post-annealing and Temperature/Humidity Conditions on the Interfacial Adhesion Energies of ALD RuAlO Diffusion Barrier Layer for Cu Interconnects (후속열처리 및 고온고습 조건에 따른 Cu 배선 확산 방지층 적용을 위한 ALD RuAlO 박막의 계면접착에너지에 관한 연구)

  • Lee, Hyeonchul;Jeong, Minsu;Bae, Byung-Hyun;Cheon, Taehun;Kim, Soo-Hyun;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.49-55
    • /
    • 2016
  • The effects of post-annealing and temperature/humidity conditions on the interfacial adhesion energies of atomic layer deposited RuAlO diffusion barrier layer for Cu interconnects were systematically investigated. The initial interfacial adhesion energy measured by four-point bending test was $7.60J/m^2$. The interfacial adhesion energy decreased to $5.65J/m^2$ after 500 hrs at $85^{\circ}C$/85% T/H condition, while it increased to $24.05J/m^2$ after annealing at $200^{\circ}C$ for 500 hrs. The X-ray photoemission spectroscopy (XPS) analysis showed that delaminated interface was RuAlO/$SiO_2$ for as-bonded and T/H conditions, while it was Cu/RuAlO for post-annealing condition. XPS O1s peak separation results revealed that the effective generation of strong Al-O-Si bonds between $AlO_x$ and $SiO_2$ interface at optimum post-annealing conditions is responsible for enhanced interfacial adhesion energies between RuAlO/$SiO_2$ interface, which would lead to good electrical and mechanical reliabilities of atomic layer deposited RuAlO diffusion barrier for advanced Cu interconnects.

Characteristics of Joint Between Ag-Pd Thick Film Conductor and Solder Bump and Interfacial Reaction (Ag-Pd 후막도체와 솔더범프 사이의 접합특성 및 계면반응)

  • 김경섭;한완옥;이종남;양택진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the ECM(Engine Control Module) alumina substrate and the intermetallic compound layer between Sn-37wt%Pb solder and pad joints after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, conductor pad roughness were increased from 304 nm to 330 nm. $Cu_6/Sn_5$ formed during initial reflow process at the interface between TiWN/Cu pad and solder grew by the succeeding reflow process, so the grains became coarse. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about 0.1∼0.6 $\mu\textrm{m}$. And a needle-shaped was also observed at the inside of the solder.

  • PDF

Experimental Study on Structural Behavior of Interfaces of Double Composite Girder Using the 80 MPa Concrete (80 MPa급 콘크리트를 활용한 이중합성 거더의 수평접합면 구조거동에 관한 실험적 연구)

  • Yang, In-Wook;Lim, Eol;Ha, Tae-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.400-413
    • /
    • 2016
  • The horizontal shear capacity when the flange of a steel girder is replaced with 80 MPa concrete is important for its structural safety. In this study, 6 specimens with different interface conditions were designed and fabricated based on the Limit State Design Code on Korean Highway Bridges and static tests were performed to measure the horizontal shear capacity. Not only the resistance factors of the stud shear connector, concrete and reinforcement, but also the surface conditions of the casing concrete and spacing of the horizontal shear reinforcements were used as the experimental variables. The experiments showed that the interfaces between the steel girder and the concrete flange have stronger joint performance than those between the concrete flange and deck slab. To ensure the composite action in the plastic zone, the conservative horizontal shear reinforcement is more important than the roughness in the concrete face.