• Title/Summary/Keyword: 접합부 손상추정

Search Result 11, Processing Time 0.023 seconds

Structural Joint Damage Assessment Using Neural Networks (신경망을 이용한 구조물 접합부의 손상도 추정)

  • 방은영;이진학;윤정방
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.35-46
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks, The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Shear Strength Model for Slab-Column Connections (슬래브-기둥 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun;Kim, Hye-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.585-593
    • /
    • 2010
  • On the basis of the strain-based shear strength model developed in the previous study, a strength model was developed to predict the direct punching shear capacity and unbalanced moment-carrying capacity of interior and exterior slab-column connections. Since the connections are severely damaged by flexural cracking, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the compressive normal stress developed by the flexural moment, the shear strength of the compression zone was derived on the basis of the material failure criteria of concrete subjected to multiple stresses. As a result, shear capacity of the critical section was defined according to the degree of flexural damage. Since the exterior slab-column connections have unsymmertical critical sections, the unbalanced moment-carrying capacity was defined according to the direction of unbalanced moment. The proposed strength model was applied to existing test specimens. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods.

Bolt-joint Structural Health Monitoring Technique Using Transfer Impedance (전달 임피던스를 이용한 볼트 접합부 구조 건전성 모니터링 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.387-392
    • /
    • 2019
  • A technique was researched to detect bolt looseness using a transfer impedance technique (the dual piezoelectric material technique) for monitoring the structural health of a bolt joint. In order to use the single piezoelectric material technique, an expensive impedance analyzer should be used. However, in the transfer impedance technique, low-cost fault detection can be performed using a general function generator and a digital multimeter. A steel plate frame test specimen composed of bolt joints was fabricated, and the tightening torques of the bolts were loosened step by step. By using the transfer impedance method, the damage index was obtained. It was found that the presence of faults could be reasonably estimated using the damage index, which increased with the degree of bolt looseness. An experiment was performed on the same specimen using the single piezoelectric material technique, and the results showed a similar tendency. It could be possible to estimate the damage of a bolt joint at low cost by eliminating the expensive impedance analyzer. This method could be used effectively for structural health monitoring after carrying out a study to estimate the fault location and severity.

Strength Model for Punching Shear of Flat Plate-Column Connections (플랫플레이트-기둥 접합부의 뚫림전단강도)

  • Choi Kyoung-Kyu;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.163-174
    • /
    • 2004
  • A number of experiments were performed to investigate the punching shear strength of flat plate-column connections. According to the experiments, the punching shear strength varies significantly with design parameters such as the column size of the connection, reinforcement ratio, and boundary condition. However, current design methods do not properly address the effects of such design parameters. In the present study, a theoratical approach using Rankine's failure cirterion was attempted to define the failure mechanism of the punching shear According to the study, the failure mechanism can be classified into the compression-controlled and the tension-controlled, depending on the amount of bottom re-bars placed at the connection, and the punching shear strength is also significantly affected by the flexural damage of slab. Based on the finding, a new strength model of punching shear was developed, and verified by the comparisons with existing experiments and nonlinear finite element analyses. The comparisons show that the proposed strength model addressing the effects of various design parameters can predict accurately the punching shear strength, compared to the existing strength models.

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

Structural Joint Damage Assessment using Neural Networks (신경망을 이용한 구조물 접합부의 손상도 추정)

  • 방은영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.131-138
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks. The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Evaluation of Fatigue Damage for Wind Turbine Blades Using Acoustic Emission (음향방출(AE)을 이용한 풍력 블레이드의 피로손상 평가)

  • Jee, Hyun-Sup;Ju, No-Hoe;So, Cheal Ho;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.179-184
    • /
    • 2015
  • In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel's total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

Dismantling and Restoration of the Celadon Stool Treasure with an Openwork Ring Design (보물 청자 투각고리문 의자의 해체 및 복원)

  • KWON, Ohyoung;LEE, Sunmyung;LEE, Jangjon;PARK, Younghwan
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.200-211
    • /
    • 2022
  • The celadon stools with an openwork ring design which consist of four items as one collection were excavated from Gaeseong, Gyeonggi-do Province. The celadon stools were designated and managed as treasures due to their high arthistorical value in the form of demonstrating the excellence of celadon manufacturing techniques and the fanciful lifestyles during the Goryeo Dynasty. However, one of the items, which appeared to have been repaired and restored in the past, suffered a decline in aesthetic value due to the aging of the treatment materials and the lack of skill on the part of the conservator, raising the need for re-treatment as a result of structural instability. An examination of the conservation condition prior to conservation treatment found structural vulnerabilities because physical damage had been artificially inflicted throughout the area that was rendered defective at the time of manufacturing. The bonded surfaces for the cracked areas and detached fragments did not fit, and these areas and fragments had deteriorated because the adhesive trickled down onto the celadon surface or secondary contaminants, such as dust, were on the adhesive surface. The study identified the position, scope, and conditions of the bonded areas at the cracks UV rays and microscopy in order to investigate the condition of repair and restoration. By conducting Fourier-transform infrared spectroscopy(FT-IR) and portable x-ray fluorescence spectroscopy on the materials used for the former conservation treatment, the study confirmed the use of cellulose resins and epoxy resins as adhesives. Furthermore, the analysis revealed the addition of gypsum(CaSO4·2H2O) and bone meal(Ca10 (PO4)6(OH)2) to the adhesive to increase the bonding strength of some of the bonded areas that sustained force. Based on the results of the investigation, the conservation treatment for the artifact would focus on completely dismantling the existing bonded areas and then consolidating vulnerable areas through bonding and restoration. After removing and dismantling the prior adhesive used, the celadon stool was separated into 6 large fragments including the top and bottom, the curved legs, and some of the ring design. After dismantling, the remaining adhesive and contaminants were chemically and physically removed, and a steam cleaner was used to clean the fractured surfaces to increase the bonding efficacy of the re-bonding. The bonding of the artifact involved applying the adhesive differently depending on the bonding area and size. The cyanoacrylate resin Loctite 401 was used on the bonding area that held the positions of the fragments, while the acrylic resin Paraloid B-72 20%(in xylene) was treated on cross sections for reversibility in the areas that provided structural stability before bonding the fragments using the epoxy resin Epo-tek 301-2. For areas that would sustain force, as in the top and bottom, kaolin was added to Epo-tek 301-2 in order to reinforce the bonding strength. For the missing parts of the ring design where a continuous pattern could be assumed, a frame was made using SN-sheets, and the ring design was then modeled and restored by connecting the damaged cross section with Wood epos. Other restoration areas that occurred during bonding were treated by being filled with Wood epos for aesthetic and structural stabilization. Restored and filled areas were color-matched to avoid the feeling of disharmony from differences of texture in case of exhibitions in the future. The investigation and treatment process involving a variety of scientific technology was systematically documented so as to be utilized as basic data for the conservation and maintenance.

Interpretation of Making Techniques through Surface Characteristic Analysis and Non-destructive Diagnosis for the Gilt-bronze Seated Buddha in Dangjin Sinamsa Temple, Korea (당진 신암사 금동여래좌상의 표면특성 분석과 비파괴 정밀진단을 통한 제작기술 해석)

  • CHOI Ilkyu ;YANG Hyeri ;HAN Duru;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.100-116
    • /
    • 2023
  • The Sinamsa Temple was built in the late Goryeo Dynasty and a gilt-bronze seated Buddha is enshrined in Geungnakjeon hall in the precinct. Various damages occurred in the gilt layer of the Buddha, such as peeling of the gilt layer and deteriorating gloss. In the study, the conservation conditions of the inside and outside on the statue were accurately investigated, and the making technique was interpreted through the material characteristics and non-destructive diagnosis of the statue. As a result, it is estimated that gold-gilding layer is pure gold, coloration pigment of black is carbon, green is malachite, atacamite and verdigris, red is red lead and cinnabar, respectively. In the deterioration evaluation, peeling, cracking, break out and exfoliation of the gilt layer are confirmed as damages, but the conservation condition is relatively wholesome. However, the gloss of the gilt layer is calculated to be wider in the poorer part than the maintenance part. The ultrasonic velocity of the statue was calculated to be 1,230 to 3,987 (mean 2,608) m/s and showed a relatively wide range. In infrared thermography, peeling was not confirmed, and no special bonding marks were found. In endoscope, some biological damage and corrosion were observed on the surface of the internal metal, and sealed artifacts were identified. Manufacturing technique based on the study, it is considered that the gilt-bronze seated Buddha was cast at once, and the mold was inverted to inject molten metal.

Comparison of Stress Response in Diallel Crossed Korean Domestic Chicken Breeds (토종 종계를 이용한 이면 교배조합 계통 간 스트레스 반응정도 비교 분석)

  • Cho, Eun Jung;Park, Ji Ae;Choi, Eun Sik;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.43 no.2
    • /
    • pp.77-88
    • /
    • 2016
  • To establish a new synthetic Korean meat chicken breed, we tested $5{\times}5$ diallel cross mating experiment with domestic chicken breeds. Comparing stress responses among diallel crossed chicken breeds, we analyzed telomere length, DNA damage and expressions of heat shock protein genes (HSPs) as the markers of the stress response. The telomere length was measured by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes. The expression levels of HSP-70, $HSP-90{\alpha}$ and $HSP-90{\beta}$ genes were analyzed by quantitative real-time polymerase chain reaction in lymphocytes. The DNA damage rate of lymphocytes was quantified by the comet assay known as the single cell gel electrophoresis. In results, there were significant differences in the values of the stress markers such as telomere length, HSPs and DNA damage rate, and also were significant differences in viabilities and body weights among the $5{\times}5$ diallel crossed chicken breeds. The telomere shortening rate, expression values of HSPs and DNA damage rate were significant low in W and Y crossed chickens compare to the others, but GG pure breed showed the highest values in the 25 crossed chickens. Estimating correlation coefficient, the survival rate positively correlated to telomere length, but negatively correlated to the expression levels of HSP-70, $HSP-90{\alpha}$, $HSP-90{\beta}$ genes and to the value of % DNA in tail as DNA damage rate. The expression levels of HSP-70, $HSP-90{\alpha}$ and $HSP-90{\beta}$ genes of dead chickens had significantly higher than those of survival chickens. According to the results on the stress marker analysis, it would be considered that the crossed breeds had more stress resistant than the pure breeds, and the crossed chickens with a light strain such as W or Y were relatively resistant to stress, but the crossed chickens with a heavy strain such as G, H, F were susceptible to stress.