• Title/Summary/Keyword: 접합부의 내력식

Search Result 66, Processing Time 0.021 seconds

An Investigation on the Ultimate Strength of Duplex Stainless Steel (STS329FLD) Bolted Connections with Two Bolts (2행 1열 듀플렉스계 스테인리스강(STS329FLD) 볼트접합부의 최대내력 조사)

  • An, Sung-Ho;Kim, Geun-Young;Hwang, Bo-Kyung;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.55-63
    • /
    • 2018
  • Recently, the use of duplex stainless steel which with a two-phase microstructure (equal mixture of ferrite and austenite) has been increased in a variety of industrial fields due to higher strength leading to weight saving, greater corrosion resistance(particularly, stress corrosion cracking) and lower price. However, currently, stainless steels are not included in the structural materials of Korean Building Code and corresponding design standards are not specified. In this paper, experimental studies have been performed to investigate the structural behaviors of duplex stainless steel (STS329FLD) bolted connection with two bolts for providing the design data. Main variables are shear connection type (single shear and double shear) and end distance parallel to the direction of applied force. Fracture modes at the final step of test were classified into typical block shear fracture, tensile fracture and curling. Curling occurrence in single shear connection led to ultimate strength drop by up to 20%. Test strengths were compared with those by current design specifications such as AISC/AISI/KBC, EC3 and AIJ and proposed equations by existing studies. For specimens with no curling, Clement & Teh's equation considering the active shear plane provided a higher strength estimation accurancy and for specimens with curling, Kim & Lim's equation considering strength reduction by curling was also overly unconservative to predict the ultimate strength of curled connections.

An Experimental Study on Structural Behavior of Bolted Angle Connections with Austenitic Stainless Steel (오스테나이트계 스테인레스강(STS304) 앵글 볼트 접합부의 구조적 거동에 관한 실험적 연구)

  • Kim, Min-Seong;Kim, Tae-Soo;Kim, Seung-Hun;Lee, Yong-Taeg
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.29-39
    • /
    • 2011
  • With regard to steel construction, many studies have been performed to examine the structural behavior of the bolted connections domestically and in other countries. Especially, a domestic study was conducted on the block shear fracture and shear lag effect on the single-bolted angle connection in carbon steel. In this study, specimens were prepared with the end distance parallel to the loading direction and bolt arrangement ($1{\times}1$, $1{\times}2$), as the main variables. Then the fracture mode and the curling effect on the bolted angle connection in austenitic stainless steel were investigated. Moreover, the fracture mode and ultimate strength were compared, and the strength reduction by curling was estimated.

Suggestion on Strength Formula of Square Hollow Section Tubluar Column-to-BeamPinned Connections (각형강관 기둥-보 핀접합부의 내력식 제안)

  • Choi, Sung Mo;Lee, Seong Hui;Lee, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.525-534
    • /
    • 2006
  • Column-to-beam pinned connections can cause local moment to the web of a steel tube due to the distance of eccentricity between the row of bolts and the column flange, which possibility deteriorates the load capacity of column. In this study, a square hollow section tubular used finite element analysis of a square hollow section tubular column was carried out, and the column width and thickness, existence and non-existence of internal reinforcement, and existence and non-existence of compressive force were taken as variables to examine the load capacity deterioration of a square column caused by moment. To guarantee the reliability of the finite element results, some specimens were fabricated and tested. The yield line method was applied to suggest the strength formulas of the square tubular column to the beam pinned connections. Based on the study results, the column strength the moment of the square hollow section tubular column to the beam pined connections improved with the increase in the w to strength limitations, a no-reinforcement type of square hollow section tubular column was proposed, and if the limitation values were not satisfied, the reinforcement of the internal column was made mandatory. Therefore, the horizontal -reinforcement type considered the strength increase, and the fabrication of the square hollow section tubular column was ar column that considered its load capacity with the moment for the no-reinforcement and the horizontal-reinforcement types.

An Experimental Study on the Behavior of Hybrid Beam Composed of End Reinforced Concrete-Center Steel (단부 철근콘크리트-중앙부 철골로 구성된 복합(複合)보의 거동(擧動)에 관한 실험적 연구)

  • Kang, Byung Su;Kim, Seong Eun;Choi, Hyun Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.413-421
    • /
    • 2002
  • This study sought to understand the mechanical behavior according to the shape of the connecting part of the hybrid beam. This part is composed of central steel. with the end reinforced by concrete in the experiment of cyclic loading. The experimental result was compared and verified with the ultimate strength formula. Likewise, the composite effect and the effectiveness of seismic capacity and stress transmission were examined. The types of each setup were as follows: main bars by welding type, reinforcing by end-plate type, reinforcing by shear connector type, and shear connector type. Results showed that the reinforcing by end-plate type and the shear connector type had excellent strength and seismic capacity as well as better stress transmission. This was due to the unity between reinforced concrete and the steel's connecting part. However, the experimental result was somehow different from the previously established ultimate strength formula. Thus, a definite ultimate strength formula is required.

Structural Strength of Beam-to-CFT Connections with Vertical Diaphragm (수직다이아프램을 사용한 충전형 각형강관기둥 접합부의 내력평가)

  • Kim, Kyungtae;Lee, Heon-Woo;Kim, Young-Ki;Kim, Taejin;Kim, Jong-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2017
  • This paper investigates structural characteristics of internal vertical diaphragm and its influence on the connection strength between concrete filled tubular(CFT) column and beam. CFT columns are hybrids that combine two materials in one member. They have the benefits of steel for high tensile strength and ductility and of concrete for high compressive strength and stiffness. Analytical method of the flexural strength of vertical diaphragm to account moment transfer between panel zones is presented using yield line theory. Connection design is verified by a set of monotonic tests and numerical analysis with different diaphragm thicknesses. Plastic zones of CFT flange was found and matched closely to FEM results. Both analytical and experimental results showed good agreement that vertical diaphragm effectively alleviates the stress and transfer the force.

Seismic Evaluation of Welded-formed square Column-Beam Connection for External Diaphragm Stress path (외다이아프램 응력경로에 따른 용접조립 각형기둥-보 접합부의 내진성능 평가)

  • Kim, Sun Hee;Yom, Kyong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.311-322
    • /
    • 2014
  • Concrete filled tubular structure should be installed diaphragms for moment connection. However internal and through diaphragm should be special welded when connected to column tube. The other hand, that has become increase of stress concentration and extend of construction error. Therefore, In this study the seismic performance of beam to column connections with External Diaphragms and implement cycle loading experiment. we had evaluated seismic performance with mentioned experiment which is concrete filled or not, variable shapes, to be welded or not of diaphragm. Also, formula of strength of external diaphragm was analyzed and looked into adequacy with regard to formula of tension strength.

An Experimental Study on Flexural/Shear Load Properties of SC(Steel Plate Concrete) Structure with Reinforced Concrete Joint (강판콘크리트 구조 이질접합부의 면외 휨/면내 전단하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hwang, Kyeong-Min;Hahm, Kyung-Won;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • This paper describes an experimental study on the mechanical characteristic and behavior of a structure that has a joint between the reinforced concrete (RC) member and steel plate concrete (SC) member. An out-of-plane flexural test on an L-type test specimen and in-plane shear test on an I-type test specimen were carried out by means of repeated cyclic loading until their failure. Based on the results, the former showed pull-out failure mode of anchored vertical bars while the latter exhibited flexural failure mode of the basement member. These results reveal that the maximum capacity of the specimens is 96% and 82%, respectively, compared with the theoretical value.

Tensile Behavior of Stud Bolt Connections (스터드 볼트 접합부의 인장 거동에 관한 연구)

  • 이태석;김승훈;서수연;이리형;홍원기
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.321-328
    • /
    • 2001
  • This paper presents the tensile behavior of stud connections installed between reinforced concrete and steel members. Eight specimens are tested to verify the factors influencing the tensile behavior of the connection. Major variables considered in the test are the reinforcement ratios of concrete member and connection details. Test results indicate that the reinforcing bars near stud bolts contribute to the increase of the tensile strength of the member as well as to the reduction of brittle failure. It is shown that C-type or U-type connection has relatively high ductility. From the evaluation on the tensile strength of test results including those of peformed by previous researchers, it was shown CCD (Concrete Capacity Design) method overestimated the strength. In this paper, the reduction factor of 0.75 ø instead of ø is suggested for design purpose of the stud connection.

Inelastic Analyses and Simplified Equations for Improved T-stub Element Used at Semi-Rigid Connections (반강접 접합부의 요소인 개량 T-stub의 비탄성 해석과 약산식)

  • Cho, Jae Chul;Kim, Won Ki;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.271-279
    • /
    • 1999
  • Recently, studies on semi-rigid beam-to-column connections have been done to develop a T-stub element with separators between column face and T-stub flange. In this paper, inelastic analyses for the improved T-stub element are performed, and their results are compared with existing experimental results. The inelastic analyses using gap elements between column face and the separator, and initial stresses at the high-tension bolts result in good agreement with experimental results. Simplified design methods estimating the initial stiffness and the strength of the semi-rigid connection for compression force are proposed.

  • PDF

An Experimental Study on the Block Shear Rupture of Angle Tension Members (인장력을 받는 ㄱ형강의 블록전단 파단에 관한 실험적 연구)

  • Kim, Bo Young;Lee, Kyu Kwong;Choi, Mun Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.721-730
    • /
    • 1998
  • In this paper, an experimental study have been many studies on the joints of steel structure, for it has great influences on the safety of structures. Research on block shear rupture of the joint receiving pure tension have been done in foreign countries, but not in Korea. This study focuses on the propriety of block shear design code, according to limited state design criteria of steel structures recently established in Korea, by an experiment on the joint of angle tension members. The methods of this study were to compare other study results on block shear rupture mode and ultimate capacity, and to evaluate the propriety of the criteria design code. The result is that tension yield shear ruptures and shear yield tension ruptures happened at the joint, and the experimental rupture load was 15% higher than the capacity entered in the criteria design code. We conclude that it is necessary to revaluate the block shear design code presented by many studies on the limited state design criteria of steel structures.

  • PDF