• Title/Summary/Keyword: 접합강도

Search Result 1,390, Processing Time 0.026 seconds

An Experimental Study on Flexural Strength of Deep Corrugated Steel Plate Composite Members by Steel Grade and Reinforcement Method (강종 및 보강방법에 따른 대골형 파형강판 합성부재의 휨성능에 관한 실험적 연구)

  • Kim, Yongjae;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.1-12
    • /
    • 2017
  • In this study, It was purpose to provide preliminary data for extension of the applicability of deep corrugated steel plate composite members by steel grade and shear reinforcement method. From the result of flexural test on deep corrugated plates composite members using GR40 and SS590, positive moment capacity was increased about 28% by SS590 steel. But to change steel grade was proved to have insignificant effects for increasement of negative moment capacity. In the moment test result of same overlapping length, Increasement rate of positive and negative moment capacity was not significantly improved by increasing the number of bolt. It was estimated to be due to the characteristics of bolt connection such as distance between centers of bolts, edge distance of bolt. In the test result on the spacing of shear reinforcement, positive moment capacity was increased and deformation of negative moment was reduced as the distance decrease. In the test result on the shape of shear reinforcement, positive and negative moment resistance was increased about 2% ~ 7% by U shaped shear reinforcement. In conclusion It was estimated that moment capacity of deep corrugated steel plate composite members are depend on steel grade of deep corrugated steel plate, spacing of shear reinforcement and reinforcing bar.

Cyclic Loading Test for Exposed Column-base Plate Connections of Small-size Steel Structures (소규모 철골조 노출형 주각부의 반복가력 실험)

  • Lim, Woo-Young;You, Young-Chan;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.34-45
    • /
    • 2017
  • Cyclic loading tests for a total of nine test specimens were performed to evaluate the seismic performance of the exposed steel column-base plate connections. From the tests, flexural strength, deformation capacity, energy dissipation, and initial stiffness were investigated. The primary test parameters were the thickness of base-plate, embedment length of anchor bolt, the presence of hook, and rib plates. Test results showed that flexural behavior of column base-plate connection was substantially affected by the base-plate thickness, embedment length and the number of anchor bolts. On the other hand, the effect of rib plates on the increase of the flexural performance was not observed. The initial stiffness of the test specimens was about 15% of the flexural stiffness obtained by assuming that the support is fixed. As a result, even if the exposed column base-plate is designed in accordance with current design recommendations, in case that bond strength between concrete and the anchor bolts is not sufficient, the base-plate connection showed an unaccceptable load-displacement behavior.

An Experimental Study on the Structural Behavior of Concrete Columns Confined with Welded Reinforcement Grids (용접 띠철근 보강된 콘크리트 기둥의 역학적 거동에 관한 실험적 연구)

  • Choi, Chang-Sik;Saatcioglu, Murat
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.187-196
    • /
    • 1999
  • An experimental investigation was conducted to study the structural behavior of concrete columns confined with welded grids. The full-scale columns with different volumetric ratio, spacing and arrangement of welded reinforcement grids were tested under simulated seismic loading. The columns were subjected to constant axial compression of approximately 20% or 40% of their capacities accompanied by incrementally increasing lateral deformation reversals. The results indicate that the welded reinforcement grid can be used effectively as confinement reinforcement provided that the steel used, have sufficient ductility and the welding process employed does not alter the strength and elongation characteristics of steel. The grids improved the structural performance of columns, which developed lateral drift ratios in excess of 3% with the spacing and volumetric ratio of transverse reinforcement similar to those required by the ACI 318-95 Building Code. Drift capacity further increased when grids with larger number of cells were used. Furthermore, the use of grids reduced congesting of reinforcement while the dimensional accuracy provided perfect support to longitudinal reinforcement.

Analytical Study on Behavior Characteristic of Shear Friction on Reinforced Concrete Shear Wall-Foundation Interface using High-Strength Reinforcing Bar (고강도 전단철근을 사용한 철근콘크리트 전단벽체-기초계면에서의 전단마찰 거동특성에 대한 해석적 연구)

  • Cheon, Ju-Hyun;Lee, Ki-Ho;Baek, Jang-Woon;Park, Hong-Gun;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.473-480
    • /
    • 2016
  • The purpose of this study is to provide analytical method to reasonably evaluate the complicated failure behaviors of shear friction of reinforced concrete shear wall specimens using grade 500 MPa high-strength bars. A total of 16 test specimens with a variety of variables such as aspect ratio, friction coefficient of interface in construction joint, reinforcement details, reinforcement ratio in each direction, material properties were selected and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the modified shear friction constitutive equation in interface based on the concrete design code (KCI, 2012) and CEB-FIP Model code 2010. The mean and coefficient of variation for maximum load from the experiment and analysis results was predicted 1.04 and 17% respectively and properly evaluated failure mode and overall behavior characteristic until failure occur. Based on the results, the analysis program that was applied modified shear friction constitutive equation is judged as having a relatively high reliability for the analysis results.

Experimental Studies on Bond and Splice Performance of Splice Sleeve for Connecting Rebar (철근연결용 스플라이스 슬리브의 이음 및 부착성능에 대한 실험적 연구)

  • Kang, Duk Man;Park, Yong Gul;Lee, Hyeon Gi;Moon, Do Young
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2017
  • The PC (Precast Concrete) construction method is a technique where concrete members that have been produced in a plant are constructed on site. Thus, continuity and secure integration of a structure that can be obtained by connecting rebars at splicing joint for PC members are the main areas of concern for this method. To evaluate the splicing and bonding performance according to application of a splice sleeve for connecting rebar in this research study, the diameter of rebar, development length, grouting strength etc. were set as variables. The performance and stiffness of splicing according to the development length of grout strength were measured and evaluated. In addition, by conducting comparative analysis on each of the variables, the factors that affected the splice sleeve for connecting rebar were discussed. The results confirmed that the strength and stiffness of the splice sleeve for connecting rebar were significantly affected by the development length while the increase in performance according to grout strength was not as significant.

Synthesis and Analysis of Multi-functional Urethane Acrylate Monomer, and its Application as Curing Agent for Poly(phenylene ether)-based Substrate Material (다관능 우레탄 아크릴레이트 단량체의 합성과 분석, 및 폴리페닐렌에테르 기판소재용 경화성분으로의 적용)

  • Kim, Dong-Kook;Park, Seong-Dae;Oh, Jin-Woo;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.413-419
    • /
    • 2012
  • Multi-functional urethane acrylate monomers as the curing agent of poly(phenylene ether) (PPE) were synthesized and then the urethane bond formation was checked by FTIR spectrometry and NMR analysis. The synthesized monomers were mixed with PPE and fabricated to dielectric substrates. After forming PPE/monomer composite sheets by a film coater, several sheets were laminated to a test substrate in a vacuum laminator and then its properties depending on the type and the amount of monomers, such as dielectric constant, dielectric loss, and peel strength, were measured. Between the two different hydroxyl acrylates, when the monomer synthesized with 2-hydroxy-3-phenoxypropyl acrylate containing a phenyl group was used as a curing agent, a smaller dielectric loss was obtained and the dielectric constant and loss decreased with a decrease in the amount of the monomer. The peel strength values of the test substrates, however, did not show any specific difference between the cases of two synthesized monomers. As a result, it was obtained the polymer substrate for high frequency application having peel strength of about 10 N, low dielectric constant of 2.54, and low dielectric loss of 0.0027 at 1 GHz.

The Mechanical Characteristics of the PLLA and PCL Sutures According to the Temperature (온도에 따른 PLLA 및 PCL 봉합사의 기계적 특성)

  • Xie, Yuying;Kang, Soon-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.931-937
    • /
    • 2018
  • Sutures are used not only for wound closure but also for oriental medicine field, beauty and even for plastic surgery. Especially, it is popular in the field of cosmetic surgery. In this paper, we produced sutures using PCL and PLLA with better strength than PDO sutures, which was widely used in the past. To learn about the mechanical characteristics of the PCL and PLLA sutures, the contraction change, tensile strength, and elongation were measured. And SEM was also analyzed for diameter and surface. The contraction change Ratio of sutures are stabilized after a certain period of time regardless of temperature. Also, it can be seen that the higher the temperature, the higher the contraction increase rate. And the rate change of mechanical properties is different according to the temperature before and after the glass temperature. Also the higher the temperature, the faster the molecular motion and the lower the tensile strength. The diameter of the PLLA and PCL sutures is opposite to the contraction change ratio. And it is considered that the sterilization temperature of PLLA sutures is best to set at $45^{\circ}C$ and the sterilization temperature of PCL sutures is best to set at $35^{\circ}C$.

An Experimental Study on Seismic Performance of Two-story Reinforced Concrete Frames Retrofitted with Internal Steel Frame and Wall Type Friction Damper (내부 철골끼움골조 및 벽체형 마찰댐퍼(WFD)로 보강된 2층 철근콘크리트골조 내진성능에 대한 실험적 연구)

  • Yoo, Chang-Gi;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.64-72
    • /
    • 2022
  • In this study, in order to confirm the seismic performance of reinforced concrete frames retrofitted with Wall Friction Damper(WFD), the test was conducted by setting two-story Reinforced concrete frames (reference specimen, OMF-N and specimen retrofitted with internal H-shaped steel frame and WFD, OMF-ALL(H)) as main variables. The WFD Seismic Retrofit Method is a mixture of strength improvement and energy dissipation methods. To prevent the pre-destruction of existing structure by friction force before sufficient energy dissipation of WFD, the internal H-shaped steel frame and chemical anchor that penetrates the side of the beam were used to install WFD. According to the test results, the OMF-N specimen showed an brittle failure pattern caused by the shear force of the R/C column after the maximum strength was expressed. The OMF-ALL(H) specimen showed that the reduction of pinching effect and the failure of the RC column occurred. Also, the maximum strength, cumulative energy dissipation and ductility of OMF-ALL(H) increased 3.01 times, 7.2 times and 1.72 times for OMF-N. As a results, test results revealed that the WFD Seismic Retrofit Method installed on Reinforced concrete structure improves the seismic performance and the strengthening effect is valid.

Strength Properties of Wooden Model Erosion Control Dams Using Domestic Pinus rigida Miller I (국내산 리기다소나무를 이용한 목재 모형 사방댐의 강도 성능 평가 I)

  • Kim, Sang-Woo;Park, Jun-Chul;Lee, Dong-Heub;Son, Dong-Won;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.77-87
    • /
    • 2008
  • Wooden model erosion control dam was made with pitch pine, of which the strength properties was evaluated. Wooden model erosion control dam was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole), changing joint in three different types. In each type, erosion control dam was made in nine floor (cross-bar of five floors and vertical-bar of four floors), of which the hight was 790 mm. And then strength properties were investigated through horizontal loading test and impact strength test, and the deformation of structure through image processing (AICON 3D DPA-PRO system). In horizontal loading test of wooden model erosion control dam using round post of diameter 90 mm, whether there was stone or not did not affect strength much when using self drill screw, but strength was decreased by 23%. In monolithic type of erosion control dam using screw bar, strength was increased by 1.5 times and deformation was decreased when filling with stone. When reinforcing with screw bar that ring is connected to self drill screw, strength was increased by 4.8 times. In impact strength test of wooden model erosion control dam made with round post of diameter 90 mm, the erosion control dam connected with self drilling screw not filling with stone was totally destroyed by the 1st impact, and the erosion control dam using screw bar was ruptured at cross-bar at which 779 kgf of impact was loaded in the 1st impact. In the 2nd impact, the base parts were ruptured, and reaction force was decreased to 545 kgf. In the 3rd impact, whole base parts were destroyed, and reaction force was decreased to 263 kgf.

Effect of Particle Size on the Characterization of Plasma Sprayed $Al_2O_3$ Coating Layer (플라즈마 용사된 $Al_2O_3$층의 특성에 미치는 입자크기의 영향)

  • Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.428-433
    • /
    • 1999
  • An objective of this study is to compare the characteristics of coating layer of plasma sprayed fine $Al_2O_3$ and those of layer by commercial $Al_2O_3$(Metco 105). The microstructure of fine $Al_2O_3$ coating layer was denser compared with commercial $Al_2O_3$ coating layer. The surface roughness$(R_a)$ of the layer by the fine $Al_2$O$_3$ was lower compared with that of commercial $Al_2O_3$. Thickness of splat for fine $Al_2O_3$ was $1.4\mu\textrm{m}$ while the commercial $Al_2O_3$ was $3.53\mu\textrm{m}$. The main phase existing in coating layer was of $\gamma-Al_2O_3$ and the fraction of $\alpha-Al_2O_3$ in fine $Al_2O_3$ coating layer was 8.39% and that of commercial $Al_2O_3$ was 13.79%. Microhardness was no great difference between the fine and commercial $Al_2O_3$ but deviation of the fine $Al_2O_3$ coating layer was relatively large. Accordingly, the strength of splat of the coating was expected that fine $Al_2O_3$was lower than commercial $Al_2O_3$ powder.

  • PDF