• Title/Summary/Keyword: 접촉피로

Search Result 208, Processing Time 0.029 seconds

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

Numerical Analysis on the Structure Behavior of the Connected Long-span Beam during Excavation in Narrow Streets (도로 폭이 좁은 굴착공사에서 연결부가 적용되는 장지간 주형의 수치해석적 거동 평가)

  • Choi, Kwang-Sou;Ha, Sang-Bong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • This study evaluates the structural behavior of connected long-span beams applied for excavation in urban areas with a narrow street. Generally, the reliability of the connection is reduced owing to the defect of the upper flange in the connection. An improved connection part was developed to complement the defects in the connected long-span beam. A finite element analysis based on a commercial program, ABAQUS, was employed to evaluate the behavior of the improved connection part. A numerical analysis model was proposed to analyze the high-strength bolt connection and the composite behavior of steel and concrete applied to the improved connection. The suitability of the proposed numerical analysis was verified by comparing the experimental and numerical analysis results of the references. Using the proposed numerical analysis method, the improved and general connections were analyzed and compared with each other. The stress distribution and elastic-plastic behavior of the long-span beam were analyzed numerically. The analysis confirmed that 25% of the compressive stress was improved, resulting in the improvement of structural safety and performance.

A Study on the Development of Lightweight Seat Cushion Extension Module (경량형 시트 쿠션 익스텐션 모듈 개발에 관한 연구)

  • Jang, Hanseul;Choi, Seongkyu;Park, Sang-Chul;Lim, Heon-pil;Oh, Eu-Ddeum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.200-207
    • /
    • 2016
  • The automotive seat is an important component that moves in sync with the driver and is actively being developed with various new functions. The aim of this work is to develop a lightweight seat cushion extension module using a lightweight material. To this end, a structural strength analysis, vertical strength test, and durability test were conducted. In the structural analysis, the maximum value of deformation under vertical load was 4.98 mm at the front of the upper panel. The maximum stress was approximately 105 MPa, which occurred at the point of contact between the upper and lower panels of the module. The vertical strength test showed a maximum vertical deformation of 5.31 mm under a vertical load, which differed from the analysis results by approximately 6.45%. The structural safety of the product was verified by the fact that it showed no harmful deformation or damage during operation after the vertical strength test and a durability test for 20,000 cycles. Furthermore, the use of engineering plastics made it possible to reduce the weight by approximately 30% compared to existing products. The lack of damage after tests verified the passenger safety, strength, and rigidity of the product. The results are expected to be applied for improving environmental and fuel efficiency regulations and preventing accidents due to driver fatigue. The applications of this module could be expanded various types of vehicles, as well as other industries in which eco-friendly and lightweight materials are used.

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network (초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2001
  • The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

  • PDF

The Effect of High-Heeled Shoes With Total Contact Inserts in the Gait Characteristics of Young Female Adults During Lower Extremity Muscle Fatigue (하지 근육의 피로상태 동안 높은 굽 신발에 적용한 전면접촉인솔이 젊은 여성의 보행 특성에 미치는 영향)

  • Ko, Eun-Hye;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kwon, Oh-Yun;Choi, Kyu-Han
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • This study investigated gait characteristics, kinematics, and kinetics in the lower extremities between two different shoe conditions (high heeled shoes (7 cm), and high heeled shoes with a total contact insert (TCI)) after lower extremity muscle fatigue. Although TCI shave been applied in high heeled shoes to increase comfort and to decrease foot pressure, no study has attempted to identify the effects of TCI in fatigue conditions. The purpose of this study was to determine the effects of walking in high heeled shoes with TCI after lower extremity muscle fatigue was induced. This study was carried out in a motion analysis laboratory at Hanseo University. A volunteer sample of 14 healthy female subjects participated. All in fatigue conditions, the subjects were divided into two groups. The muscle fatigue was induced by 40 voluntary dorsi- and plantar-flexion exercises and 40 heel-rise exercises of the dominant foot. Surface electromyography was used to confirm the localized muscle fatigue using power spectral analysis of three muscles (tibialis anterior, gastrocnemius medialis and lateralis). The results were as follows: (1) In muscle fatigue conditions, the use of TCI decreased the peak flexion angle of the hip joint significantly in the early stance phase (p<.05) and increased the peak hip flexion moment in the terminal stance phase (p<.05). (2) In muscle fatigue conditions, the application of TCI also increased peak hip power generation in the early stance phase and peak hip power absorption in the terminal stance phase (p<.05). (3) In muscle fatigue conditions, the use of TCI reduced the impact force significantly and increased the secondary peak vertical GRF. These findings suggest that the TCI may provide beneficial effects when muscle fatigue occurs for a high heeled shoe gait. Future research employing the patient population and various types of TCI materials are required to clarify the effects of TCI.

  • PDF

핵융합로 부품에 대한 고열유속 시험조건 결정

  • Bae, Yeong-Deok;Lee, Dong-Won;Kim, Seok-Gwon;Yun, Jae-Seong;Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.273-273
    • /
    • 2010
  • 고열부하 환경에 노출되는 핵융합로의 플라즈마 대향부품은 주로 낮은 원자번호 물질-열전도가 좋은 물질-구조체의 순으로 다층 구조를 이루고 있으며, 이들 간의 우수한 접합성은 부품의 성능을 좌우하는 핵심 요소이다. 이러한 플라즈마 대향부품의 건전성을 평가하기 위해서는 고열속의 열부하를 반복적으로 인가하는 시험이 요구되며, 이를 위해 본 연구원에서는 KoHLT-1, 2의 시험시설을 운용하고 있다. 본 시설에서는 열부하원으로서 그라파이터 히터를 사용하며, 히터는 두 개의 시험 대상부품 사이에 설치되고, 히터에 고전류를 인가하여 복사열에 의해 시험 부품에 열부하를 가하게 된다. 고열부하 환경에서 열피로 시험을 위해 히터에 인가되는 전류를 시간에 따라 일정한 패턴으로 반복적으로 ON-OFF 하게 된다. 본 논문에서는 이러한 고열부하시험을 수행함에 있어 고려해야 할 여러 가지 요소에 대해 논의하였다. 우선 인가하는 열유속(heat flux) 값은 일차적으로 시험시설의 최대 출력에 의해 좌우되며, 시험대상물의 운전조건 및 열부하 반복횟수에 의해 결정된다. 열부하 반복횟수는 주어진 열유속 값에 대해 total strain이 파단에 이르는 수준에 의해 결정된다. 열부하를 인가하는 시간은 히터에 전류를 인가했을 때 요구되는 온도로 상승하는 데 걸리는 시간과 시험대상물의 온도가 더 이상 증가하지 않는데 걸리는 시간에 의해 좌우된다. 냉각시간은 길수록 시험대상물의 온도가 냉각수의 온도에 접근하게 되나 너무 길어지면 시험시간이 급격히 증가하게 되므로, 온도 감소 곡선을 검토하여 적절한 시간을 정하게 된다. 열유속 측정은 냉각수의 온도 상승값과 유량으로부터 계산하게 되며, 정확한 측정을 위해서는 열부하를 인가하는 시간이 충분히 길어야 한다. 또한 시험대상 부품에서 열부하가 인가되는 면적을 정확히 정의해야 하며, 냉각관로에 열부하가 인가되어서는 않된다. 또한 시험대상부품을 지지하는 지지구조체를 통한 열손실을 최소화해야 정확한 열유속을 측정할 수 있다. 시험대상부품을 설치할 때 히터와의 간격 또한 결정해야 할 중요한 요소이며, 간격이 좁을수록 최대 열유속 값을 증가시킬 수 있으나, 너무 가까운 경우 히터의 열변형에 의한 접촉 및 아크 방전의 가능성이 있으며, 이 경우 히터와 시험대상부품의 손상을 가져오게 된다. 시험대상물이 국제열핵융합로(ITER)의 일차벽과 같이 베릴륨이 포함되어 있는 경우 방전에 의한 손상은 인체에 유해한 오염의 원인이 될 수 있다. 또한 순간적인 방전은 고가의 고전류전원의 고장을 유발할 수도 있다. 열부하 시험 중 시험대상물의 온도를 정확히 측정하는 것은 필수적이며, 온도 변화 곡선으로부터 시험대상물의 건전성 여부를 판단할 수 있다. 이를 위해 변화를 가장 잘 탐지 할 수 있는 위치에 온도 센서를 설치하는 것이 관건이며, 이는 사전 분석을 통해 알 수 있다.

  • PDF

A Study on the Optimum Design of Multiple Screw Type Dryer for Treatment of Sewage Sludge (하수슬러지 처리를 위한 다축 스크류 난류 접촉식 건조기의 최적 설계 연구)

  • Na, En-Soo;Shin, Sung-Soo;Shin, Mi-Soo;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.223-231
    • /
    • 2012
  • The purpose of this study is to investigate basically the mechanism of heat transfer by the resolution of complex fluid flow inside a sophisticated designed screw dryer for the treatment of sewage sludge by using numerical analysis and experimental study. By doing this, the result was quite helpful to obtain the design criteria for enhancing drying efficiency, thereby achieving the optimal design of a multiple screw type dryer for treating inorganic and organic sludge wastes. One notable design feature of the dryer was to bypass a certain of fraction of the hot combustion gases into the bottom of the screw cylinder, by the fluid flow induction, across the delicately designed holes on the screw surface to agitate internally the sticky sludges. This offers many benefits not only in the enhancement of thermal efficiency even for the high viscosity material but also greater flexibility in the application of system design and operation. However, one careful precaution was made in operation in that when distributing the hot flue gas over the lump of sludge for internal agitation not to make any pore blocking and to avoid too much pressure drop caused by inertial resistance across the lump of sludge. The optimal retention time for rotating the screw at 1 rpm in order to treat 200 kg/hr of sewage sludge was determined empirically about 100 minutes. The corresponding optimal heat source was found to be 150,000 kcal/hr. A series of numerical calculation is performed to resolve flow characteristics in order to assist in the system design as function of important system and operational variables. The numerical calculation is successfully evaluated against experimental temperature profile and flow field characteristics. In general, the calculation results are physically reasonable and consistent in parametric study. In further studies, more quantitative data analyses such as pressure drop across the type and loading of drying sludge will be made for the system evaluation in experiment and calculation.

Molecular Epidemiologic Study of a Methicillin-resistant Staphylococcus aureus Outbreak at a Newborn Nursery and Neonatal Intensive Care Unit

  • Kang, Hyun Mi;Park, Ki Cheol;Lee, Kyung-Yil;Park, Joonhong;Park, Sun Hee;Lee, Dong-Gun;Kim, Jong-Hyun
    • Pediatric Infection and Vaccine
    • /
    • v.26 no.3
    • /
    • pp.148-160
    • /
    • 2019
  • Purpose: This study aimed to investigate the molecular epidemiology of a methicillin-resistant Staphylococcus aureus (MRSA) outbreak at a newborn nursery and neonatal intensive care unit (NICU). Methods: During the outbreak, from August to September 2017, MRSA isolates collected from neonates and medical staff underwent genotyping and screened for virulence factors. Antibiotic susceptibilities were tested. Results: During the study period, 41 neonates were admitted at the nursery (n=27) and NICU (n=14). Of these, 7 had MRSA infections (skin infection [n=6] and sepsis [n=1]) and 4 were colonized with MRSA. Associated medical staff (n=32) were screened; three were nasal MRSA carriers. Staphylococcal chromosomal cassette mec (SCCmec) type II, sequence type (ST) 89, spa type t375 was found to be the skin infection outbreak causing strain, with multi-drug resistance including low-level mupirocin resistance. SCCmec type IVa, ST 72, and a novel spa type designated t17879, was the cause of MRSA sepsis. Many different types of MRSA were colonized on the neonates; however, SCCmec type IVa, ST 72, spa type t664 was colonized in both neonates and a NICU nurse. All MRSA isolates from colonized infants were positive for the Panton-Valentine leukocidin (PVL) toxin gene. Conclusions: The strain causing an outbreak of skin infections had multi-drug resistance. Also, MRSA colonized in the neonates were found to carry the PVL toxin gene. Because different strains are present during an outbreak, molecular epidemiologic studies are important to identify the outbreak strain and colonized strains which aid in effective control and prevention of future MRSA outbreaks.