• Title/Summary/Keyword: 접촉강도

Search Result 468, Processing Time 0.025 seconds

Strength Evaluation on Sectional Members of Prefabricated Precast Concrete Arch with Reinforced Joint (보강된 이음부가 적용된 조립식 프리캐스트 콘크리트 아치의 단면 강도 평가)

  • Joo, Sanghoon;Chung, Chulhun;Bae, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1363-1372
    • /
    • 2014
  • In the previous study, the structural performance of proposed precast concrete arch with reinforced joint was evaluated by structural experiment. In this paper, finite element analysis considering both material and contact nonlinearity was carried out on the specimens of the previous study. Based on the result of analysis and experiment, friction coefficient between concrete blocks was determined. To evaluate the strength of sectional member, elastic analysis was carried out on the arch using linear elastic analysis program. The section force was compared with the nominal strength of arch section. It was concluded that the maximum load of all the specimens exceed the nominal strength of arch section. Those results of the strength evaluation were similar to the results of structural experiments. Therefore, it is concluded that the elastic analysis and ultimate strength model can effectively evaluate the strength for the proposed precast concrete arch composed of concrete blocks and reinforced joint in design.

Strength Evaluation of a Doubler Plate of Ship Structure subjected to the Biaxial In-plane Compression (양축방향 면내 압축하중을 받는 선박 이중판의 강도 평가)

  • Juh-Hyeok Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.72-85
    • /
    • 2001
  • A study for the structural strength evaluation on the doubler plate subjected to the biaxial in-plane compression has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate, elasto-plastic large deflection analysis is introduced including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed based on their results. A1so, in order to compare the doubler structure with the original strength of main plate without doubler, a simple formula for the evaluation of the equivalent flat plate thickness is derived based on the additional series analysis of flat plate structure. Using this derived equation, the thickness change of a equivalent flat plate is analyzed according to the variation of various design parameters of doubler plate and some design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas by author et a1. is discovered and these relations are formulated for the future development of simple strength evaluation formula of doubler plate structure.

  • PDF

Strength Analysis of a Slender Doubler Plate of Ship Structure subjected to the Longitudinal In-plane Compression (종방향 면내 압출하중을 받는 세장한 선박 이중판의 강도 해석)

  • Juh-Hyeok Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.92-105
    • /
    • 2000
  • A study for the structural strength evaluation on the slender doubler plate has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate subjected to the longitudinal in-plane compression, elasto-plastic large deflection analysis is introduced including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed based on their results. Also, in order to compare the doubler structure with the original strength of main plate without doubler, a simple formula for the evaluation of the equivalent flat plate thickness is derived based on the additional series analysis of flat plate structure. Using this derived equation, the thickness change of a equivalent flat plate is analyzed according to the variation of various design parameters of doubler plate and some design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas by author et al. is discovered and these relations are formulated for the future development of simple strength evaluation formula of doubler plate structure.

  • PDF

Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect (Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.305-310
    • /
    • 2021
  • Mechanical properties of fiber reinforced composites were affected to fiber volume fractions (FVF) and interfacial property by sizing agent conditions. An optimum interface can relieve stress concentration by transferring the mechanical stress from the matrix resin to the reinforcements effectively, and thus can result in the performance of the composites. The interfacial properties and wettability between the epoxy resin and glass fiber (GF) were evaluated for different sizing agent conditions and FVFs. The surface energies of epoxy resin and different sizing agent treated GFs were calculated using dynamic and static contact angle measurements. The work of adhesion, Wa was calculated by using surface energies of epoxy matrix and GFs. The wettability was evaluated via the GF tow capillary test. The interfacial shear strength (IFSS) was evaluated by microdroplet pull-out test. Finally, the optimized GFRP manufacturing conditions could be obtained by using wettability and interfacial property.

FE Analysis on the Screwed Safety of a Valve for a LPG Bombe (LPG 용기용 밸브의 체결안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Oh, Kyong-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.79-84
    • /
    • 2007
  • In this paper, the finite element analysis of a valve screw for a LPG cylinder has been presented on the leakage safety and strength one, which are computed and investigated by a contact normal stress and von Mises stress between a female screw of a valve and a male screw of a neck ring in a LPG bombe. The LP gas charging pressure of a LPG bombe is $8{\sim}9kg/cm^2$, which is pressurized to the screw sealing contact areas between a valve and a LP gas cylinder. The peak failures of the screw tooth height due to a scratch wear and chipping loss of the contact area may decrease screw tooth strength and increase a leakage of a LP gas. These are strongly affect to the contact normal and von Mises stresses of the valve screws. The FEM computed results show that the tooth height loss due to a wear and chipping failure of the screw peak does not affect to the LP gas leak and strength of a valve screw theoretically. But if the tooth wear of the screw height of a brass valve overpasses the critical strength safety of the valve, the valve screw may be failed in fastening the valve and a LP gas bombe suddenly.

  • PDF

Synthesis and Effect of Plasma Treatment of Acrylic Composite Particle Binder (아크릴계 복합입자 바인더의 제조와 플라즈마 처리영향)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.276-283
    • /
    • 2008
  • Kind of monomer(MMA, EA, BA, St)and the monomer ratio(80/20 to 20/80) where changed in the preparation of the core shell binder, and property was improved the plasma processing. Each material changed by plasma treatment time($1{\sim}10\;s$) to change to measure the tensile strength, contact angle and adhesion peel strength for the core shell binder optimal conditions for handling the output of the surface treatment. The type of polymerization and composition of the binder is a regardless initiator of APS, the reaction temperature of $85^{\circ}C$ to 0.3 wt% of the surfactant used to indicate when the conversion rate was the highest, core shell composite particle binder got two glass temperature curves. Core shell binder after the plasma processing contact angle change is the PEA/PSt 38 percent of cases within five seconds to indicate slight decrease was a decline rapidly if not handled $0^{\circ}$ to reach. Tensile strength PSt/PMMA varies $46.71{\sim}46.27\;kg_f$/2.5 cm and adhesion strength PEA/PMMA varies $7.89{\sim}14.44\;kg_f$/2.5 cm increases. Overall, adhesion strength of core shell composite particle is in the order of order PEA>PBA>PSt for shell monomer MMA.

A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil (동결토 전단강도를 활용한 동착강도 산정에 관한 연구)

  • Choi, Chang-Ho;Ko, Sung-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.13-23
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. It denotes that adfreeze bond strength is the most important design parameter for foundations in cold region. Adfreeze bond strength is affected by various factors like 'soil type', 'frozen temperature', 'normal stress acting on soil/pile interface', 'loading rate', 'roughness of pile surface', etc. Several methods have already been proposed to estimate adfreeze bond strength during past 50 years. However, most methods have not considered the effect of normal stress for adfreeze bond strength. In this study, both freezing temperature and normal stress have been controlled as primary factors affecting adfreeze bond strength. A direct shear box was used to measure adfreeze bond strength between sand and aluminum under different temperature conditions. Based on the test results, the relation between shear strength of frozen sand and adfreeze bond strength have been investigated. The test results showed that both of shear strength and adfreeze bond strength tend to increase with decreasing frozen temperature or increasing confining pressure. The ratio of shear strength and adfreeze bond strength, expressed as $r_s$, decreased initially frozen section but increased at much lower frozen temperature and there were uniform intervals under the different normal stress conditions. A method for predicting adfreeze bond strength using $r_s$ has finally been proposed in this study.

Friction Characteristics on Interface Between Reinforcement and Sand by Direct Shear Test Methods (전단시험방법에 따른 토목섬유/모래 접촉면에서의 마찰특성)

  • Ju, Jae-Woo;Park, Jong-Beom;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • The most important part in the earth reinforcement is the interface between soil and the reinforcement. Shear strength and shear behavior in this interface make a great role relating to the reinforcement effect. This paper presents 2 kinds of direct shear test methods. one is the strain free shear test, called 'free method', that is performed by the free condition of allowing tensile strain. The other is the strain fix shear test, called 'fixed method', that is performed by the fixed condition of not allowing tensile strain. Two reinforcements were used such as nonwoven geotextile and geogrid. That is, interfaces are composed of geogrid/sand and geotextile/sand. From the test results it shows us that the fixed method had a greater friction angle and a smaller peak shear strain than those of the free method. Residual stress of the fixed method was bigger than that of the free method but the residual stress ratio was vice versa.

  • PDF

Probabilistic Characteristics Analysis of Disturbed Function for Geosynthetic-Soil Interface Using Cyclic Shear Tests (동적전단시험을 이용한 토목섬유-흙 접촉면에 대한 교란도함수의 확률특성 분석)

  • Huh, Jungwon;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.81-91
    • /
    • 2012
  • This paper mainly deals with the analysis of probabilistic characteristics of the disturbed function proposed to predict dynamic behavior of Geosynthetic-soil interface as the lining and cover systems used in waste landfills. Calibration and statistical property estimation of the parameters in the disturbed function model were first performed using many experimental data obtained from a new multi-purpose interface apparatus (M-PIA). In order to analyze the effect due to changes in chemical degradation and normal loads condition, probabilistic properties such as mean, coefficient of variation and distribution type of the disturbed function were evaluated using both the LHS method known to be a very efficient sampling scheme and the estimated statistical property of A and Z. As a result, variation of the disturbed function is found to range approximately from 10~28% according to the level of ${\xi}_D$ and Weibull appears to be the most adequate distribution type at almost all levels of ${\xi}_D$. It is concluded that a probabilistic safety assessment method for Geosynthetic-soil interface considering uncertainty in shear strength can be developed by utilizing probabilistic properties of the disturbed function obtained in this study.

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant (치근접촉이 마이크로 임플란트 인접골 응력에 미치는 영향에 대한 유한요소해석)

  • Yu, Won-Jae;Kim, Mi-Ryoung;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.6-15
    • /
    • 2011
  • Objective: The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant. Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant. Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged. Conclusions: Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.