• Title/Summary/Keyword: 접촉강도

Search Result 468, Processing Time 0.033 seconds

Time Serial Change of Proximal Contact Tightness after Crown Restoration (인공치관 수복 후 인접면 접촉강도의 경시적 변화)

  • Na, Hyun-Joon;Kang, Dong-Wan;Oh, Sang-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.197-204
    • /
    • 2010
  • The purpose of the study was to observe the time serial changes in proximal contact tightness after single crown restoration. Initial proximal contact tightness before crown preparation and after prosthesis restoration were measured repeatedly in 12 subjects. In consequence proximal contact tightness of temporary setting on prosthesis was bigger than contact tightness before initial preparation, contact tightness of the prostheses of 1-2 weeks after the setting was similar to that before the preparation, tightness of 2-4 weeks after the setting showed little change and maintained constant contact tightness.

The Characteristics of Dynamic Behaviors for Geosynthetic-soil Interface Considering Chemical Influence Factors (화학적 영향인자를 고려한 토목섬유-흙 접촉면 동적거동 특성)

  • Park, Innjoon;Kwak, Changwon;Kim, Jaekeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.47-54
    • /
    • 2010
  • Nowadays, geosynthetics for reinforcement and protection are widely applied to the waste landfill site. Current research indicates the potential for progressive failure in geosynthetic-soil system depends on the interface shear strength governed by several intrinsic factors such as moisture, normal stress, chemical, etc. In particular, the effect of the acidity and basicity from the leachate is intensively reviewed to assess the chemical reaction mechanism of interface shear strength under the cyclic loading condition. New multi-purpose interface apparatus(M-PIA) has been manufactured and the cyclic direct shear tests using submerged geosynthetics and soils under the different chemical conditions have been performed, consequently, the thickness of interface and shear stress degradation are verified. The basic schematic of the Disturbed State Concept(DSC) is employed to estimate the shear stress degradation in the interface, then, normalized disturbed function is obtained and analyzed to describe the shear stress degradation of geosynthetic-soil interface with chemical influence factors under dynamic condition.

Friction Behavior at the Soil/Geosynthetic Interface in Respect of Efficiency (효율관점에서 흙/토목섬유 접촉면에서의 마찰특성)

  • Ahn, Hyun-Ho;Shim, Seong-Hyeon;Shim, Jai-Beom;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.65-72
    • /
    • 2007
  • Large-scale direct shear tests were conducted in order to investigate both the shear strength of soil itself and the friction behavior at the interface of soil/geosynthetics in respect of efficiency in this study. Sand, crushed stone and three types of geotextile (i.e. one woven geotextile and two nonwoven geotextiles) were used in the experimental program. The considered interfaces for the evaluation of interface shear strength in this study included sand/sand, crushed stone/crushed stone, sand/woven geotextile, crushed stone/woven geotextile, crushed stone/nonwoven geotextile-A and crushed stone/nonwoven geotextile-B. The results showed that the efficiency of 84% was obtained at the interface of sand/woven geotextile compared with the shear strength of sand itself (i.e. sand/sand interface). The efficiencies of 74%, 83% and 72% were obtained at the interface of crushed stone/nonwoven geotextile-A, crushed stone/nonwoven geotextile-B and crushed stone/woven geotextile, respectively compared with the shear strength of crushed stone itself (i.e. crushed stone/crushed stone interface).

Evaluation of Tightness of Proximal tooth Contact on Implant Prostheses (임프란트 보철수복물에서의 인접치간 접촉강도의 평가)

  • Kim, Sang-Pil;Jung, J-Hyun;Kang, Dong-Wan;Oh, Sang-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.371-379
    • /
    • 2008
  • The aim of this study was to evaluate the tightness of proximal tooth contact(TPTC) using a novel device at rest state on implant prostheses. Ten healthy young adults with class I normal occlusion consented to participate in the study and twenty patients were restored with a total 20 single-implant crowns in the left maxillary and mandibular second molars for 10 single-implant crowns, respectively. Test area were divided by 4 groups. UM describes the contact between the upper natural left first molar and natural second molar; LM the contact between the lower natural left first molar and natural second molar; IUM the contact between the upper natural left first molar and implant second molar and ILM the contact between the lower natural left first molar and implant second molar. The TPTC was measured at rest state in each area. The mean TPTC of the UM, LM, IUM and ILM was 1.48(${\pm}0.44$) N, 1.78(${\pm}0.40$) N, 1.14(${\pm}0.37$) N and 1.30(${\pm}0.32$) N respectively. These results indicate that the TPTC was less between natural tooth and implant prosthesis than between natural teeth.

Surface roughness crushing effect on shear behavior using PFC (PFC를 이용한 평면 파쇄가 전단 거동에 미치는 효과)

  • Kim, Eun-Kyung;Jeong, Da-Woon;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.321-336
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness crushing on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. Particle shape was classified into one ball model of circular shape and 3 ball model of triangular shape. The surface shape was modelled by wall model of non-crushing surface and ball model of crushing surface. The results showed that as the bonding strength of ball model decreases, lower interface strength is induced. After the surface roughness crushing was occurred, the interface strength tended to converge and higher bonding strength induced lower surface roughness crushing. Higher friction angle was induced in wall model and higher surface roughness induced the higher friction angle. From these findings, it is verified that the surface roughness and surface roughness crushing effect on the particle/surface interface shear behavior.

Evaluation on Strength Characteristics of Reactive Materials to Prevent the Diffusion of Organic Pollutants (유기오염물 차단을 위한 반응재료의 강도 특성 평가)

  • Jai-Young Lee;Seung-Jin Oh;Su-Hee Kim;Kicheol Lee;Jeong-Jun Park;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.35-42
    • /
    • 2023
  • This paper described the strength variation characteristics to evaluate the applicability of a reactive material that can absorb organic pollutants as an underground barrier. The Strength was evaluated by unconfined compression test. The test results showed that the strength of the reactive material according to the absorption of each pollutant was in the order of water > TCE > TPH. However, the strength of the reactive material absorbing TPH was greater than that of the case absorbing TCE, when the composition ratio of polynorbornene was 12% or less. The strength of the reaction material in contact with water continued to decrease as the polynorbornene composition ratio decreased. The strength of the reaction material in contact with TCE and TPH increased as the polynorbornene composition ratio decreased from 30% to 21%, and then decreased. In other words, the optimal composition ratio of the reactive material should be applied considering the strength due to contact with pollutants according to the stress conditions occurring in the ground.

The Influence of Moisture on the Interface Shear Strength Between Geosynthetics (토목섬유의 접촉 전단강도에 대한 함수비의 영향)

  • Seo, Min-Woo;Park, In-Joon;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2004
  • Various geosynthetics are widely installed as a liner or a protective layer of waste landfills. The interface shear strength between the layers of geosynthetics in waste landfills is an important parameter to ensure the safety of bottom and cover system design. In this study, estimations of interface shear strength between geomembrane and geotextile or Geosynthetic Clay Liners (GCL) are performed by large direct shear tests. Especially, this research is focused on the effect of moisture within the interface shear strength between geosynthetics, because most interfaces are vulnerable to rain, leachate and groundwater beneath the liners.

Time Serial Change of Proximal Contact Tightness Between the Implant Prothesis and Natural Tooth (임플란트 보철물과 자연치 사이의 인접접촉강도의 경시적 변화)

  • Kim, Jin-A;Oh, Sang-Ho;Kim, Hee-Jung;Min, Jeong-Bum
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.3
    • /
    • pp.233-243
    • /
    • 2012
  • The aim of this study was to evaluate time serial change of the TPTC(Tightness of Proximal Tooth Contact) between the implant prosthesis and natural tooth at rest state. Thirty-one patients(19 males and 12 females; mean age, 48.2 years) restored with a total 31 single-implant crowns in the left maxillary for 13 single-implant and left mandibular second molars for 18 single-implant crowns, respectively were selected. The TPTC was checked directly after delivery, 1 month after delivery and 6 months after delivery of prothesis at rest state. The TPTC decreased significantly as time goes by both maxilla(p<.01) and mandible(p<.05). The TPTC between the implant prosthesis and natural tooth decreased as time goes by after fixed implant prothesis placement.

Contact fatigue and strength degradation in dental ceramics (치아용 세라믹스에서의 접촉피로 및 강도저하)

  • 정연길;이수영;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.527-533
    • /
    • 1999
  • Hertzian indentation tests with spherical indenters in water were conducted to examine the contact fatigue in three dental ceramics, such as feldspathic porcelain, micaceous glass-ceramic (MGC) and glass-infiltrated alumina, which was used as dental restorations, and evaluated the effect of contact damage on strength. Initial damage was dependent of microstructure, showing cone cracks of brittle behavior in the feldspathic porcelain and deformation of quasi-plastic behavior in the MGC, with an intermediate case in the glass-infiltrated alumina. However, as increasing the number of cyclic loading (n=1~n =$10^6$)all materials showed an abrupt strength degradation, at which fracture was originated from damage in the contact fatigue. There were two strength degradation with increasing the number of cyclic loading in specific loads (200N, 500N, 1000N):first was from the cone cracks, and second was from the radial cracks created by cyclic loading. The radial cracks, once formed, led to rapid degradation in strength properties, Finally the material was failed at the high number of cyclic loading. Strength degradation with indentation load at fixed number of cyclic loading indicated that the feldspathic porcelain should be highly damage tolerant to the contact fatigue.

  • PDF

Properties of Silicon Coated Fabric for Membrane Treated by Low Temperature Plasma (저온플라즈마 처리에 의한 실리콘코팅 막구조 원단의 특성변화)

  • Park, Beob;Lee, Jang-Hun;Koo, Kang
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.60-60
    • /
    • 2011
  • 막구조는 근래에 와서 대공간 구조 및 지붕구조에 가장 보편적으로 사용되는 경량 인장 구조물로 각광받고 있다. 구조용 막재는 풍하중 및 설하중에 충분히 감당할 수 있도록 강도와 내구성을 가지고 있어야 한다. 일반적으로 막구조 재는 PVC코팅 폴리에스터막, 실리콘코팅 유리섬유막, PTFE코팅 유리섬유막이 있다. 제직되는 원단의 크기가 한정되어 있기 때문에 재단 후 접착하여 제작한다. 이 때문에 이음부분이 나 재단부분에 코팅으로 인한 접착이 어려워 고온고압으로 접착을 한다. 이 연구에서는 실리콘코팅 유리섬유막의 접착시 어려움을 보완하기 위해 저온 Plasma를 이용한 처리법으로 방전에 의해 Plasma를 발생시켜 50w, 100w 출력으로 10분, 20분간 처리하여 그 결과를 접촉각과 SEM 관찰을 통해 표면처리를 관찰하였다. Plasma 처리로 인해 실리콘 표면층에 균열이 발생하고 표면이 갈라짐을 확인할 수 있었다. 접촉각측정 결과 Plasma 출력과 시간의 증가함에 따라 접촉각은 감소하였다. 실리콘코팅 원단에 저온 Plasma 처리한 후 표면 특성을 분석하고 원단을 접착을 시켜 박리 강도를 측정함으로써 막구조 원단의 접착력 향상에 대한 연구를 진행하였다. KS K 0533 접착포의 박리 강도 시험방법으로 실리콘코팅 원단의 박리 강도를 측정한 결과 플라즈마 처리 원단이 플라즈마 미처리 원단보다 박리 강도가 향상된 것을 확인할 수 있었다. 저온 Plasma 처리 시간이 증가할수록 표면의 젖음성을 향상시켜 접촉각을 낮추었다. 이는 곧 표면에너지의 증가를 뜻하는 것으로 접착력을 증가시켜 실리콘코팅 원단의 접착성을 시킴으로써 강한 강도와 내구성을 갖춘 막구조물의 개발에 기대되고 있다.

  • PDF