• Title/Summary/Keyword: 접착 특성

Search Result 860, Processing Time 0.03 seconds

Development of Pore-filled Polymer Electrolyte Membranes for Flexible Electrochromic Devices (유연한 전기변색 소자를 위한 세공충진 고분자 전해질 멤브레인의 개발)

  • Park, Hyeon-Jung;Lee, Ji-Hyeon;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.333-342
    • /
    • 2021
  • A flexible electrochromic device (ECD) is a promising technology that is expected to be applied in various fields such as smart windows. Polymer electrolyte is an important component that determines the bleaching-coloration performance and physical stability of flexible ECDs. In this study, a pore-filled polymer electrolyte membrane (PFPEM) with excellent dimensional stability was developed to effectively fabricate flexible ECDs and improve durability. Polyvinyl acetate, which has excellent adhesion, and polyethylene glycol, which can improve ionic conductivity, were filled in the pores of a porous substrate made of polyethylene, which is inexpensive and has excellent physical and chemical stability. The optimal lithium salt (LiTFSI) content of the prepared PFPEM was determined at about 27 wt%, and it was confirmed to possess excellent dimensional stability, adhesive strength, and ion conductivity close to that of conventional polymer electrolytes. Although the visible light transmittance was lowered by the use of the porous substrate, it was expected to act as an advantage in the colored state.

Recent Progress of Antibacterial Coatings on Solid Substrates Through Antifouling Polymers (박테리아 부착억제 고분자 기반 고체 표면의 항균 코팅 연구 동향)

  • Ko, Sangwon;Lee, Jae-Young;Park, Duckshin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.371-378
    • /
    • 2021
  • The formation of hydrophilic surface based on polymers has received great attention due to the anti-adhesion of bacteria on solid substrates. Anti-adhesion coatings are aimed at suppressing the initial step of biofilm formation via non-cytotoxic mechanisms, and surfaces applied hydrophilic or ionic polymers showed the anti-adhesion effect for bioentities, such as proteins and bacteria. This is attributed to the formation of surface barrier from hydration layers, repulsions and osmotic stresses from polymer brushes, and electrostatic interactions between ionic polymers and cell surfaces. The antifouling polymer coating is usually fabricated by the grafting method through the bonding with functional groups on surfaces and the deposition method utilizing biomimetic anchors. This mini-review is a summary of representative antifouling polymers, coating strategies, and antibacterial efficacy. Furthermore, we will discuss consideration on the large area surface coating for application to public facilities and industry.

Low-cost Fiber Bragg Grating Interrogator Design for Unmanned Aircraft (무인 항공기를 위한 저가형 FBG 인터로게이터 설계)

  • Hong, Jae-Beom;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.465-470
    • /
    • 2020
  • Complex materials are widely used in aviation industries where lightweighting is essential because they have lighter properties than metals. However, composite materials can cause defects such as internal void formation, poor adhesive mixing, and non-adhesive parts during the production process, and there is a risk of micro-cracking and interlayer separation due to low energy impact. Therefore, a structural damage test is essential. As a result, structural integrity monitoring using FBG is drawing attention. Compared to conventional electrical sensors, FBG has the advantage of being more corrosion-resistant and multiplexed without being affected by electrical noise. However, interloggers measuring FBG are expensive and have a large disadvantage because they are made on the premise of measuring large structures. In this paper, low-cost interloggers were designed for use in unmanned or small aircraft using optical switche, WDM filter, and LTFs, and compared to conventional high-priced interrogator.

Preparation and Physical Properties of Epoxy with Improved Yellowing Resistance for the Preservation of Stone Cultural Heritage (석조 문화재 보존용 저황변 Epoxy의 제조 및 물성 연구)

  • Lee, Seungyeon;Oh, Seungjun;Wi, Koangchul
    • Conservation Science in Museum
    • /
    • v.26
    • /
    • pp.1-12
    • /
    • 2021
  • The bisphenol A epoxy resin currently used for the conservation of stone cultural heritage items is known to suffer from yellowing discoloration. In order to mitigate this yellowing and explore the availability of more diverse materials for the conservation of stone cultural heritage items, a hydrogenated Bisphenol A-based epoxy resin was prepared and compared with the epoxy resin currently used in the conservation treatment of stone cultural heritage items. The newly prepared epoxy resin showed improved physical properties relative to the existing materials, especially in terms of tensile strength, adhesion, and machinability, while the yellowing discoloration was reduced by a factor of roughly five to eight. The results suggest that epoxy resin could be used as a stable material for the conservation treatment of stone cultural heritage items, most of which are located outdoors.

Enhancing Adhesion between Polyphenylene Sulfide Fabric and Polytetrafluoroethylene Film for Thermally Stable Air Filtration Membrane (열안정 공기 여과막용 폴리페닐렌 설파이드 원단과 폴리테트라플루오로에틸렌 필름 사이의 접착력 향상)

  • Jin Uk Kim;Hye Jeong Son;Sang Hoon Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.201-210
    • /
    • 2023
  • Dust filter membranes play a crucial role in human life and various industries, as they contribute to several important aspects of human health, safety, and environmental protection. This study presents the development of a polysulfone@polyphenylene sulfide/polytetrafluoroethylene (PSf@PPS/ePTFE) composite dust filter membrane with excellent thermal stability and adhesion properties for high-temperature conditions. FT-IR analysis confirms successful impregnation of PSf adhesive onto PPS fabric and interaction with ePTFE support. FE-SEM images reveal improved fiber interconnection and adhesion with increased PSf concentration. PSf@PPS/ePTFE-5 exhibits the most suitable porous structure. The composite membrane demonstrates exceptional thermal stability up to 400℃. Peel resistance tests show sufficient adhesion for dust filtration, ensuring reliable performance under tough, high-temperature conditions without compromising air permeability. This membrane offers promising potential for industrial applications. Further optimizations and applications can be explored.

Restoration of Pottery and Celadon for Exhibition (展示(전시)를 위한 토기(土器)와 청자(靑磁)의 복원(復元) - 토기기대(土器器臺), 노형기대(爐形器臺), 청자사이호(靑磁四耳壺)를 중심(中心)으로 -)

  • Kang, Hee-suk;Ahn, Byong-chan
    • Conservation Science in Museum
    • /
    • v.1
    • /
    • pp.37-42
    • /
    • 1999
  • Conservation treatment was done for the pottery-stand of Kaya period which was to be exhibited in celebration of the opening of Kimhae National Museum and for the jar of Chinese celadon which was to be exhibited in Korea National Museum's special exhibition "Formation of Ancient States". Through the examinations by naked eyes and under the microscope, condition before treatment, patterns and manufacturing techniques of the objects were observed. According to these examinations, conservation treatments, suitable for each object was finished. As the pottery-stand was damaged severely, the epoxy resin was pasted directly on the broken surface of the pottery to restore the original shape and pattern, color and feeling similar to original state were given to the restored area. Although same restoration material was applied on the celadon, it was not pasted directly on the broken surface of the celadon so that the restored area could be dismantled, and color and feeling were also treated somewhat differently.

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

Research on Rapid Disaster Prevention Measures due to Leakage During Transport of Hydrochloric Acid Tank Lorry (염산 탱크로리 운송 중 누출에 따른 신속 방재방안 연구)

  • Byoung-chan Moon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.213-221
    • /
    • 2024
  • Purpose: The purpose is to find the optimal way to quickly block the leak in the event of a leak accident in a tank lorry transporting hydrochloric acid aqueous solution, a hazardous chemical, and to carry out effective disaster prevention work to minimize damage caused by the leak. Method: We organized the overall characteristics of hydrochloric acid and accidents that occurred during transportation by accident type and cause, and created a small tank that can be tested assuming a leak situation in a hydrochloric acid tanker, creating an environment similar to the leak situation, and leaking in various ways. I would like to experiment and organize blocking methods. Result: Through experiments, an effective leak blocking method was confirmed. We would like to summarize measures to quickly block a leak in the event of a leak and present the optimal disaster prevention plan that can be applied at the accident site. Conclusion: It has been confirmed that using a combination of adhesive tape and magnets is more effective in blocking leaks. Rapid response is possible by repeatedly training business emergency response teams and product transporters to appropriately select and respond to leak-blocking equipment. Additional research on various leak prevention methods is needed in the future.

Quality Properties of Enteric-Coated Soft Capsule Using PEG as a Plasticizer (PEG를 가소제로 사용한 장용성 연질캡슐의 코팅 품질 특성)

  • Yang, Joo Hwan;Han, Joon Taek;Oh, In Ho;Park, Geum Duck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.260-267
    • /
    • 2015
  • We investigated the applicability of polyethylene glycol (PEG) as a plasticizer in enteric-coated soft capsules based on determination of quality characteristics according to molecular weight and concentration of enteric-coating PEG solution. There was no difference according to molecular weight of PEG, whereas a low PEG concentration in the enteric-coating solution was associated with higher whiteness index and slower disintegration time in pH 6.8 media. Brittleness was observed in the coating film at seam areas in 5% PEG enteric-coating solution after 2 weeks of storage at room temperature. The enteric-coating properties of PEG were compared with those of acetylated monoglyceride (AMG) and triacetin, which are enteric-coating plasticizers. Enteric-coated soft capsule containing PEG as a plasticizer showed a lower whiteness index and faster dissolution profile than AMG and triacetin. Moreover, enteric-coated soft capsule containing AMG and triacetin as plasticizers showed coating film brittleness at seam areas after 2 months of accelerated storage [$40^{\circ}C$, relative humidity (RH) 75%] but no difference at room temperature storage ($25^{\circ}C$, RH 60%). The present study suggests that concentration of PEG is important to determine enteric-coating quality, regardless of the molecular weight of PEG. In conclusion, PEG has potential as a plasticizer due to its transparency and storage stability in enteric-coated soft capsules.

Vacuum Web-coater with High Speed Surface Modification Equipment for fabrication of 300 mm wide Flexible Copper Clad Laminate (FCCL) (초고속 대면적 표면 처리 장치가 부착된 300 mm 폭 연성 동박적층 필림 제작용 진공 웹 코터)

  • Choi, H.W.;Park, D.H.;Kim, J.H.;Choi, W.K.;Sohn, Y.J.;Song, B.S.;Cho, J.;Kim, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2007
  • Prototype of $800{\ell}$ vacuum web coater (Vic Mama) consisting of ion source with low energy less than 250 eV for high speed surface modification and 4 magnetron sputter cathodes was designed and constructed. Its performance was evaluated through fabricating the adhesiveless flexible copper clad laminate (FCCL). Pumping speed was monitored in both upper noncoating zone pumped down by 2 turbo pumps with 2000 l/sec pumping speed and lower surface modification and sputter zone vacuumed by turbo pumps with 450 1/sec and 1300 1/sec pumping speed respectively. Ion current density, plasma density, and uniformity of ion beam current were measured using Faraday cup and the distribution of magnetic field and erosion efficiency of sputter target were also investigated. With the irradiation of ion beams on polyimide (Kapton-E, $38{\mu}m$) at different fluences, the change of wetting angle of the deionized water to polyimide surface and those of surface chemical bonding were analyzed by wetting anglometer and x-ray photoelectron spectroscopy. After investigating the deposition rate of Ni-Cr tie layer and Cu layer was investigated with the variations of roll speed and input power to sputter cathode. FCCL fabricated by sputter and electrodeposition method and characterized in terms of the peel strength, thermal and chemical stability.