• Title/Summary/Keyword: 접착법

Search Result 342, Processing Time 0.027 seconds

Strength evaluation for bonded structural adsesive (구조접착이음의 접합부 강도평가)

  • Yi, W.;Jeong, E. S.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.23-33
    • /
    • 1996
  • 자동차 차체에 구조접착접합을 적용하는 것은 시대적인 흐름으로 볼 때 지극히 당연한 것으로 생각된다. 자동차는 머리말에서 언급한 사회적 요구와 그리고 기술적인 측면이 서로 미묘한 조화를 이루면서 만들어진다. 구조접착접합을 적용하는 기술상의 변혁은 처음에는 조금씩 점진적으로, 주의깊게 진행하는 것이 바람직할 것이다. 검토해야 할 여러가지 문제가 쌓여있고, 앞으로의 기술개발을 큰 과제로 하고 있지만, 자동차 기술을 담당하고 있는 기술인들의 능력으로 볼때 대부분의 문제들은 해결가능할 것으로 전망된다. 구조접착접합은 용접성이 떨어지는 고강도 박강판이나 이종재료.복합재료의 접합법으로 기대가 크다는 것을 전반적으로 살펴보았다. 또한 박강판, 알루미늄합금, 엔지니어링 프라스틱, 세라믹스 등의 이용도를 높이기 위해서도 접착접합의 응력해석과 강도평가는 필수적이므로 접착접합에 대한 강도평가의 확립이 시급한 실정이다. 따라서 접착접합 기술의 활용측면에서 '구조접착'의 신뢰성을 높이기 위한 접착이음의 응력해석과 강도평가법에 대한 관심과 연구개발을 통해 현재의 접착강도평가 문제를 풀어나가야 할 것이다.

  • PDF

複合構造의 結合

  • 홍창선
    • Journal of the KSME
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 1982
  • 복합재료를 이용하여 부품제작을 한 후 어떠한 결합방법을 채택할 것인가를 결정할 때 고려해 야할 점을 기계적 결합법과 접착결합법을 비교하여 검토하였다. 기계적 결합은 하중을 많이 받고 분해 및 결합이 자주 예상되는 부품에 채택해야 할 것이며 복합재료의 특성을 고려하여 보강 시에 부착하는 평판의 섬유방향은 가급적 드릴구멍주위를 부드럽게 하여 응력집중을 낮출 수 있으며 하중의 종류에 따라 적층의 섬유방향을 조절함으로서 응력집중을 조절할 수 있다. 드릴 구멍 주위인 파손은 평판의 폭과 구멍의 직경등이 크게 작용함으로 강도해석을 할 경우에 응력 해석을 한 후 허용응력등을 결정해야할 것이다. 접착졀합법은 작업이 간단하나 신뢰도가 떨어지 므로 하중을 많이 받는 구조물에의 사용에 주의를 요하며 설계방법도 매우 다양하게 제안되어 있어 선택함에 있어 하중 환경조건등을 점검해야할 것이다. 접착결합법은 드릴구멍같은 불연속 성을 갖지 않기 때문에 응력집중이 생기지 않으나 접착층의 길이등 기하학적 형상에 따라 다르게 나타남으로 잡착층의 분리가 일어나지 않도록 설계되어야 한다. 특히 복합재료의 이방성인 성 질을 감안하여 접착층에 이웃하는 피접착층의 섬유방향에 주의해야 하며 층간응력이 파손에 미 치는 영향을 고려하여 설계에 임해야 한다.

  • PDF

A study on the bonding strength of co-cured T800/epoxy composite-aluminum single lap joint according to the forming and additional pressures (동시 경화법으로 제조된 T800/에폭시 복합재료-알루미늄 단면겹치기조인트의 성형압력 및 부가압력에 따른 접착강도에 관한 연구)

  • Son, Dae-Sung;Bae, Ji-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.23-28
    • /
    • 2011
  • In this paper, the bonding strengths of co-cured T800 carbon/epoxy composite-aluminum single lap joints with and without additional pressures were investigated using the pressure information induced by the fiber tension during a filament winding process. The specimens of all the tests were fabricated by an autoclave vacuum bag de-gassing molding being controlled forming pressures (absolute pressures of 0.1MPa, 0.3MPa and 0.7MPa including vacuum). A special device which can act uniform additional pressures on the joining part of the single lap joint specimen was designed to measure the bonding strengths of composite-aluminum liners of type III hydrogen pressure vessel fabricated by a filament winding process. After the three different additional pressures (absolute pressures of 0.1MPa, 0.3MPa and 0.7MPa) were applied to the specimens the effect of the additional pressures on the bonding strengths of the co-cured single-lap joints were evaluated.

Debonding Detection Techniques of FRP/Rubber Interface by the Ultrasonic Phase Reversal (초음파 위상 반전에 의한 FRP/고무 접착계면의 미접착 결함 검출 연구)

  • Kim Dong-Ryun;Chung Sang-Ki;Lee Sang-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.11-16
    • /
    • 2006
  • The object of this study is to develop new examination techniques for detecting the debonds in adhesive interface of different kinds of the material. Ultrasonic signal was modeled by theoretically analyzing ultrasonic propagation phenomenon of the adhesive interface and debonding interface. The test method using the phase reversal of the debonding interface applied to the FRP/Rubber test block. Aluminum/Rubber test block with the flat bottom hole was manufactured to quantitatively evaluate the minimum detection ability of the defects. The pulse echo reflection method and the phase reversal method were mutually compared and it was estimated that the phase reversal method could detect the debonds on the basis of the theoretically predicted ultrasonic signal and ultrasonic test data.

  • PDF

A Debonding Detection Technique for FRP/Rubber Interface by Ultrasonic Phase Reversal (초음파 위상 반전에 의한 FRP/고무 접착 계면의 미접착 결함 검출 연구)

  • Kim, Dong-Ryun;Lim, Soo-Yong;Chung, Sang-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 2009
  • The object of this study is to develop new examination technique for detecting debond in adhesive interface of different kinds of materials. Ultrasonic signal was modeled by theoretically analyzing ultrasonic propagation phenomenon of the adhesive interface and debonding interface. The test method using the phase reversal of the debonding interface applied to the FRP/Rubber test block. Aluminum/Rubber test block with the flat bottom hole was manufactured to evaluate quantitatively the minimum detection ability of defects. The pulse echo reflection method and the phase reversal method were mutually compared and it was estimated that the phase reversal method could detect the debond on the basis of the theoretically predicted ultrasonic signal and ultrasonic test data.

A Study on the Strength Evaluation and Defect Detection Capability of Adhesive Joint with CNTs (CNT를 첨가한 접착조인트의 결함탐지능 및 강도 평가에 관한 연구)

  • Kim, Tae-Hyeong;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.151-155
    • /
    • 2018
  • Mechanical joint and adhesive joint are two typical joining methods for structures. The adhesive joints distribute the load over a larger area than mechanical joints and have excellent fatigue properties. However, the strength of adhesive joint greatly depends on the environmental conditions and the skill of the operator. Therefore, there is a need for techniques to evaluate the quality of the adhesive joints. The electric resistance method is a very promising technique for detecting defects by measuring the electrical resistance of an adhesive joint in which CNTs are dispersed in an adhesive. In this study, Aluminium-Aluminium adhesive single lap joint specimens were fabricated by using the adhesive dispersing CNTs using a sonicator and a 3-roll mill, and the static strengths and defect detection capabilities of the joints using the electrical resistance method were evaluated according to the CNTs content.

A Study of Adhesive Mechanism of Gecko Adhesion System using Adhesive Beam Contact Model (보 접착 모델을 이용한 게코 접착 시스템의 접착 메커니즘에 대한 연구)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.403-407
    • /
    • 2010
  • Gecko adhesion system consists of beam-shaped seta and spatula which has the role of adhesive pad. In this paper, adhesion mechanism of gecko adhesion system is performed by using adhesive beam contact model. this model has a feature of non-uniform stress profile on the contact surface and adhesion/detachment mechanism is determined by the tensile stress of the contact region. a spatula tip pad has the role of reduction of maximum tensile stress and adhesive force is increased due to this effect. As for a reverse loading case, maximum compressive stress drops by the spatula effect and this cause unsymmetric loading conditions between adhesion and detachment forces. In this study, finite element method is used for the analysis of adhesive beam contact model and the results for spatula effect are presented.

Adhesion between Rubber Compound and Copper-Film-Coated Steel Plate Prepared by Vacuum Sputtering and Substitution Plating Methods (진공증착법과 치환도금법으로 제조한 구리박막 피복철판과 배합고무의 접착)

  • Moon, Kyung-Ho;Han, Min-Hyun;Seo, Gon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.3
    • /
    • pp.1-8
    • /
    • 2003
  • Adhesion between rubber compound and copper-film-coated steel plate (abbreviated hereafter as copper film plate) with different thicknesses of copper film was investigated. Two different methods were employed for the preparation of the copper film plates: a substitution plating of preelectroplated zinc with copper ion and a vacuum sputtering of copper on steel plate. Adhesion strength of the copper film plates with rubber compounds was largely dependent upon the thickness of copper film, regardless of their preparation methods. The copper film plates with thinner thickness than 75 nm showed high adhesion comparable to brass, while those with thicker copper film showed poor adhesion due to excessive growth of copper sulfide at adhesion interface.

  • PDF

Historical Trends of Micromechanical Testing Methods for Structural Fiber Reinforced Composites to Evaluate the Interfacial Adhesion (구조용 섬유강화복합재료의 계면접착 특성 평가를 위한 미세역학시험법의 연구동향 고찰)

  • Park, Joung-Man;Kim, Jong-Hyun;Kim, Dong-Uk;Kwon, Dong-Jun
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.59-69
    • /
    • 2022
  • In composite materials, the adhesion and interfacial properties were the most important factors to obtain high performance of mechanical properties. This review paper had been focused on the micromechanical evaluation methods for the interfacial property historically. The interfacial property of fiber-reinforced composites (FRC) could be evaluated using only a single fiber and matrix via various micromechanical testing methods. Self-sensing due to the fracture behavior of FRC could be determined and discussed more critically and clearly using electro-micromechanical evaluation. In this paper, the research trends for micro-mechanical evaluation of composites was summarized, and their practical applications would be suggested in the future.

A Study on Strength Evaluation of Adhesive Joints(1st Report, Stress Analysis and Fracture Strength of Adhesive Single-Lap Joint) (접착이음의 강도평가에 관한 연구 (제1보 겹치기 접착이음의 응력해석과 파괴강도))

  • 정남용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.667-674
    • /
    • 1992
  • Recently advantages in composite and light weight material technique have led to the increased use of structural adhesives in various industries. In spite of such wide application of the adhesive joints, the evaluation method of fracture strength and design methodology of them, have not been established. In this study finite element method, theoretical and experimental analyses were investigated according to changes of lap length and adhesive for adhesive single-lap joint. As the results, the strength evaluation of adhesive joint by conventional nominal stress, was pointed out inadequate strength evaluation and design method regardless stress singularity, stress distribution and crack propagation in its adhesive layer. Also, it was examined the problems to apply fracture mechanics by means of static and fatigue test.