• Title/Summary/Keyword: 접착레진

Search Result 329, Processing Time 0.03 seconds

Effect of 2% chlorhexidine application on microtensile bond strength of resin composite to dentin using one-step self-etch adhesives (2% 클로르헥시딘 적용이 한 단계 자가부식 접착제를 이용한 복합 레진의 상아질에 대한 미세인장 결합강도에 미치는 효과)

  • Jang, Soon-Ham;Hur, Bock;Kim, Hyeon-Cheol;Kwon, Yong-Hun;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.486-491
    • /
    • 2010
  • Objectives: This study examined the effect of 2% chlorhexidine on the ${\mu}TBS$ of a direct composite restoration using one-step self-etch adhesives on human dentin. Materials and Methods: Twenty-four extracted permanent molars were used. The teeth were assigned randomly to six groups (n = 10), according to the adhesive system and application of chlorhexidine. With or without the application of chlorhexidine, each adhesive system was applied to the dentin surface. After the bonding procedure, light-cure composite resin buildups were produced. The restored teeth were stored in distilled water at room temperature for 24 hours, and then cut and glued to the jig of the microtensile testing machine. A tensile load was applied until the specimen failed. The failure mode was examined using an operating microscope. The data was analyzed statistically using one-way ANOVA, Student's t-test (p < 0.05) and Scheffet's test. Results: Regardless of the application of chlorhexidine, the Clearfil $S^3$ Bond showed the highest ${\mu}TBS$, followed by G-Bond and Xeno V. Adhesive failure was the main failure mode of the dentin bonding agents tested with some samples showing cohesive failure. Conclusions: The application of 2% chlorhexidine did not affect the ${\mu}TBS$ of the resin composite to the dentin using a one-step self-etch adhesive.

THE EFFECTS OF SURFACE TREATMENT OF DENIAL NICKEL-CHROMIUM ALLOY ON TENSILE BOND STRENGTH (치과용 니켈-크롬합금에 대한 표면 처리가 인장접착강도에 미치는 영향)

  • Lee, Eun-Suk;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.493-502
    • /
    • 1997
  • This study was conducted to evaluate the tensile bond strength by bonding the dental bracket with Super-bond after treating the surface of dental Nickel-Chromium alloy with sandblasting, sandblasting & tin-plating, respectively, and tin-plating. 10 pieces of Nickel-Chromium alloys with brackets bonded with Super-bond without their surface treatment were sampled as a control group, 20 pieces of Nickel-Chromium alloy brackets bonded with Super-bond after treating them with sandblasting as group I, 20 pieces of Nickel-Chromium alloys tin-plated and bonded with Super-bond after sandblasting as group II, and then 20 pieces of alloys with brackets bonded with Super-bond after tin-plating as group III. The result of those examination and comparison is summarized as follows: 1. Group I showed the mean tensile bond strength of $14.41{\pm}2.24MPa$ which was highest among 4 groups, followed by group III($13.59{\pm}.51MPa$), group II($12.27{\pm}.45MPa$), and control group($10.50{\pm}1.57MPa$), respectively. However, it was shown that there was no statistically significant difference between group I and III, group III and II, and group II and control group(p>0.05). 2. The main failure pattern of those brackets showed that $70\%$ of the control group had an adhesive failure at the bracket-Superbond interface, and $30\%$ at the Nickel-Chromium alloy-Superbond interface, while other groups did the adhesive failure at the bracket-Superbond interface. 3. When examined under SEM, it was shown that adhesives were mostly attached to the surface of the Nickel-Chromium alloy for all groups while a considerable quantity of adhesives were attached to the bracket base. Then, those samples treated only with sandblasting showed the most even and remarkable roughness of their surface.

  • PDF

BOND STRENGTH OF BONDED AMALGAM USING DENIAL ADHESIVES (치과용 접착제를 사용한 접착 아말감의 결합 강도)

  • Kam, Dong-Hoon;Lee, Sang-Dae;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.284-295
    • /
    • 1999
  • The purpose of this study was to measure and analyze the bond strength of bonded amalgam using dental adhesives and to compare this with light-curing composite resin. Sections 8mm in diameter were punched out from the labial surface of bovine anterior teeth. These were embedded in clear acrylic resin blocks with labial surface facing out. 55 specimens were made for enamel and dentin each. After dividing these into 5 groups, group 1: Superbond C&B, group 2: Panavia 21, group 3: All-Bond 2, group 4: Fuji I Glass Ionomer Luting Cement, group 5: Scotchbond Multi-Purpose(Restorative Z-100), molds with holes of 6.3mm in diameter and 1.5mm in depth were placed over the specimens. The exposed tooth surfaces were treated with adhesives and the molds were filled with amalgam. In group 5, the mold was filled with composite resin and light-cured for 40 seconds. The author measured all specimens for bond strength 24 hours after amalgam filing and analyzed fracture surfaces. The following results were obtained: 1. Among the dentin groups, groups 1, 2 and 4 showed significantly lower bond strength compared with group 5(P<0.05). 2. Among the enamel groups, group 4 showed significantly lower bond strength compared with group 5(P<0.05). 3. In group 2, 2D showed significantly lower bond strength compared with group 2E(P<0.05). Other adhesives showed no such differences in bond strength between dentin and enamel(P>0.05). 4. Cohesive failure was observed in groups 1E and 5D, while mixed failure was seen in groups 1 and 5. Only adhesive failures were noted in groups 2, 3, 4.

  • PDF

MICROLEAKAGE OF COMPOSITE RESIN RESTORATION ACCORDING TO THE NUMBER OF THERMOCYCLING (열순환 횟수에 따른 복합레진의 미세누출)

  • Kim, Chang-Youn;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • Present tooth bonding system can be categorized into total etching bonding system (TE) and self-etching boding system (SE) based on their way of smear layer treatment. The purposes of this study were to compare the effectiveness between these two systems and to evaluate the effect of number of themocycling on microleakage of class V composite resin restorations. Total forty class V cavities were prepared on the single-rooted bovine teeth and were randomly divided into four experimental groups: two kinds of bonding system and another two kinds of thermocycling groups. Half of the cavities were filed with Z250 following the use of TE system, Single Bond and another twenty cavities were filled with Metafil and AQ Bond, SE system. All composite restoratives were cured using light curing unit (XL2500, 3M ESPE, St. Paul, MN, USA) for 40 seconds with a light intensity of $600mW/cm^2$. Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Half of teeth were thermocycled 500 times and the other half were thermocycled 5,000 times between $5^{\circ}C$ and $55^{\circ}C$ for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}A$) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. From this study, following results were obtained: There was no interaction between variables of bonding system and number of thermocycling (p = 0.485). Microleakage was not affected by the number of thermocycling either (p = 0.814). However, Composite restoration of Metafil and AQ Bond, SE bond system showed less microleakage than composite restoration of Z250 and Single Bond, TE bond system (p = 0.005).

Micro-tensile Bond Strength of Composite Resin Bonded to Er:YAG Laser-prepared Dentin (Er:YAG 레이저로 삭제된 상아질에 대한 컴포지트 레진의 미세인장결합강도에 관한 연구)

  • Min, Suk-Jin;Ahn, Yong-Woo;Ko, Myung-Yun;Park, June-Sang
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.211-221
    • /
    • 2006
  • Purpose The aims of this study were to evaluate micro-tensile bond strength of composite resin bonded to dentin following high-speed rotary handpiece preparation or Er:YAG laser preparation with two different adhesive systems and to assess the influence of different Er:YAG laser energies on the micro-tensile bond strength. Materials and Methods In this study, 40 third morlars were used. Flat dentin specimans were obtained and randomly assigned to eight groups. Dentin surfaces were prepared with one of four cutting types: carbide bur, Er:YAG laser (2 W, 3 W and 4 W) and conditioned with two bonding systems, Scotchbond Multipurpose Plus (SM), Clearfil SE bond (SE) and composite resin-build ups were created. After storage for 24 hours, each specimen was serially sectioned perpendicular to the bonded surface to produce more than thirty slabs in each group. Micro-tensile bond strength test was performed at a crosshead speed of 1.0 mm/min. Micro-tensile bond strengths (${\mu}TBS$) were expressed as means$\pm$SD. Data were submitted to statistical analysis using two-way ANOVA, one-way ANOVA, Student-Newman-Keuls' multiple comparison test and t-test. Results and Conclusion 1. Regardless of bonding systems, the ${\mu}TBS$ according to cutting types were from highest to lowest : 3 W, 2 W, Bur, and 4 W. In addition, there was no significant difference between Bur and 4 W (p<0.001). 2. Regardless of cutting types, SM showed significantly higher ${\mu}TBS$ than SE (p<0.001). 3. Bonding to dentin conditioned with SM resulted in higher ${\mu}TBS$ for 3 W compared to Bur, 2 W, and 4 W. There was no significant difference between 2 W and Bur (p<0.001). 4. Bonding to dentin conditioned with SE resulted in higher ${\mu}TBS$ for 3 W compared to 2 W, 4 W, and Bur. Bur exhibited significant lower ${\mu}TBS$ than all other cutting types. There were no significant differences between 3 W, 2 W and between 4 W and Bur (p<0.001). 5. The ${\mu}TBS$ of laser cutting groups were shown in order from highest to lowest: 3 W, 2 W and 4 W in two bonding systems. There was no significant difference between 2 W and 3 W in SE (p<0.001). : The ${\mu}TBS$ of composite resin bonded dentin was significantly affected by interaction between the cutting type and bonding system. In the range of 2 W-3 W, cavity preparation of the Er:YAG laser seems to supply good adhesion of composite resin restoration no less than bur preparation. In particular, if you want to use the self-etching system, including Clearfil SE bond for the purpose of a simplification of the bonding procedures and prevention of adverse effects by excessive etching, an Er:YAG laser may offer better adhesion than a bur.

EFFECT OF ACID-TREATMENT ON DENTIN BONDING (산 처리가 상아질 접착에 미치는 영향)

  • Kim, Young-Kyong;Kim, Sung-Kyo;Park, Jin-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.73-83
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of various acid treatments on dentin bonding. Freshly extracted human teeth were uprightly embedded in self curing acrylic resin, and their occlusal surfaces were grinded to expose flat dentin surfaces. The specimens were divided into 4 groups. Specimens of one group were not treated so as to be a control and those of the other three groups were threated with 10% polyacrylic acid, 10% phosphoric acid, and 10-3 solution(10% citric acid/3% ferric chloride) respectively. Primer, bonding resin and composite resin were applied over the treated dentin surfaces sequentially. All specimens were stored in $37^{\circ}C$ distilled water for 24 hours, then the tensile bond strength was measured and the treated dentin surfaces and fracured dentin surfaces were examined under a scanning electron microscope. The results were as follows: Bond strengths of acid-treated groups were higher than those of the untreated group. In the acid-treated groups, bond strength was found to be the highest in the 10-3 solution group followed by the 10% phosphoric acid group and the 10% polyacrylic acid group(P<0.01). On SEM examination of dentin surfaces, the untreated dentin surface showed a remaining smear layer and closed dentinal tubules. Dentin surfaces treated with 10 % polyacrylic acid showed a clean dentin surface without the smear layer, but showed remaining smear plugs in dentinal tubules. A dentin surface treated with 10% phosphoric acid or 10-3 solution showed open dentinal tubules without the smear layer or smear plugs. On SEM observation of the fractured dentin-resin interface, the untreated group showed that failure occurred in the smear layer. The group treated with 10% polyacrylic acid showed no resin tag remained in the dentinal tubules, but resin tags in the dentinal tubules were observed in the group treated with the 10% phosphoric acid or the 10-3 solution. On the failure mode examination, the higher the bond strength of the group, the higher the frequency of cohesive failure. The coefficient between bond strength and cohesive failure rate was 0.71.

  • PDF

A COMPARATIVE STUDY OF BOND STRENGTH OF RECYCLED BRACKETS (재생 브라켓의 전단접착강도에 관한 비교 연구)

  • Shur, Cheong-Hoon;Choi, Eun-Ah
    • The korean journal of orthodontics
    • /
    • v.28 no.4 s.69
    • /
    • pp.641-657
    • /
    • 1998
  • This study was undertaken to compare the bond strength and the fracture site of new and recycled brackets according to the base design. 252 sound premolars extracted for orthodontic treatment were collected and Type I, Type II, Type III brackets were divided into four groups by recycling method Each bracket was then bonded to an extracted premolar. Instron Universal Testing Machine(model W) was used to measure the shear bond strength, and the surface of the recycled brackets were viewed in SEM For the analysis of the results, one way ANOVA and Scheffe's multiple range test was executed using the SPSSWIN program. 1. The shear bond strength showed statistically significant difference according to the bracket base design(p<0.001). Type III bracket(round indentation base, micro-etched) showed the highest bond strength, Type I bracket(foil-mesh base) was second, and Type II bracket(grooved integral base, micro-etched) was last. 2. The effect of recycling on the bond strength was different according to bracket type. The shear bond strength of Type I, Type II brackets showed the smallist reduction when treated for 1 minute in Big Jane(p<0.05), but the shear bond strength of Type III brackets showed no statistically significant difference according to recycling method(p>0.05). 3. In Type I, Type II brackets, frequent fracture site was bracket-resin interface, but in Type III brackets, about half of the resin was retained on the tooth surface frequently. 4. The shear bond strength was highest when about half of the resin was retained on the tooth surface(p<0.05). 5. The resin remnant on the bracket base after recycling had no effect on the shear bond strength.

  • PDF

EFFECTS OF COLLAGENASE AND ESTERASE ON DENTIN BOND STRENGTH AND NANOLEAKAGE (Collagenase와 esterase가 상아질 접착강도와 nanoleakage에 미치는 영향)

  • Jung, Young-Jung;Hahn, Se-Hyun;Kim, Chong-Chul;Lee, Sang-Hoon;Kim, Jung-Wook;Kim, Young-Jae;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.3
    • /
    • pp.389-398
    • /
    • 2008
  • The purpose of this study was to evaluate the effects of collagenase and esterase on dentin bond strength and nanoleakage. Resin composites were bonded to occlusal dentin of premolars with Single Bond 2(SB) and Clearfil SE Bond(SE). After the microtensile specimens were prepared and stored in PBS for 24 hours(I) or, PBS(II), collagenase(III), esterase(IV) solution for 4 weeks, the specimens were stained with silver nitrate solution. Microtensile bond strength(${\mu}TBS$) and silver penetration area were measured and, the results were as follows: 1. For group II, III, and IV, the bond strengths of SB were lower than those of SB(p<0.05). The bond strengths of SB II, III, and IV were lower than that of SB I(p<0.05). There was no difference among the bond strengths of SE $I{\sim}IV$ groups(p>0.05). 2. Silver penetration areas of SB were higher than those of SE for all storage groups(p<0.05). In SB and SE groups, there was no significant difference of silver penetration area among $I{\sim}IV$ groups(p>0.05). 3. SE I, II, and III showed inverse relationship between the bond strengths and the silver penetration areas(p<0.05).

  • PDF

Tensile Bond Strength of Glass Ionomer Cements (글라스 아이오노대 시멘트의 인장접착강도)

  • BYUN, Seung Min;KWON, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 1996
  • This study was conducted to evaluate the tensile bond strength of three commercially available glass ionomer cements as orthodontic bracket adhesives. 120 premolars extracted for orthodontic treatment were prepared for bonding and standard edgewise brackets were bonded with Shofu Glaslonomer Cement (Shofu Co., U.S.A.), GC Fuji ItGC Co., Japan), KETAC-CEM(ESPE Co., West Germany) with different P/L ratio. The tensile bond strength was tested by Instron testing device after 24hours and 3months from bonding. After debracketing, bracket bases were examined to determine the failure sites. The results of this study were as follows: 1. KETAC CEM showed the highest bond strength other than measurement after 24 hours and at its original P/L ratio, and seemed to have clinically a proper bond strength. It seemed, however, that both Shofu Giaslonomer Cement and GC Fuji I had an inappropriate bond strength. 2. The incorporation of additional powder into the mixture improved the tensile bond strength. 3. Prolonged storage time improved the tensile bond strength. 4. Of the failure, failure occured at the tooth-adhesive interface(54.2%) was the most common type. The second type of failure(36.7%) was combination type, where part of the adhesive remained on the tooth and part on the bracket. And the last type of failure(9.1%) occured at the adhesive-bracket interface.

  • PDF

Effect of Provisional Restorative and Filling Materials on Bond Strength of Adhesive Resin Cement between Lithium Disilicate Glass-Ceramic and Dentin (Lithium Disilicate Glass-ceramic과 상아질 간의 접착성 레진 시멘트의 결합강도에 대한 임시 수복재와 임시 충전재의 영향)

  • Oh, Sang-Chun;Sim, Hun-Bo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.4
    • /
    • pp.359-365
    • /
    • 2013
  • The aim of this study was to evaluate the effect of temporary restorative and filling material on bonding strength between lithium disilicate glass-ceramic and dentin. 60 extracted human molars were cross-sectioned at occlusal third and were embedded into self-cure acrylic resin. Then the teeth were randomly divided into four groups of 15 each. Lithium disilicate glass-ceramic is cemented to dentin as follows: after no any application of the provisional materials (Group A), after application of ALIKETM (GC America Inc.)(Group B), after application of Luxatemp$^{(R)}$ Automix plus (DMG, Germany)(Group C), after application of Fermit$^{(R)}$ (Ivoclar Vivadent, Leichtenstein)(Group D). After the specimens were stored in distilled water for 24 hours, the shear bond strength of the specimens were measured using UTM (Zwick 1456 41, Zwick, Germany) at a crosshead speed of 1mm/min. The data were analysed by one-way ANOVA and Tukey HSD tests. There were no statistically significant differences of bond strength among the groups. Fracture type was showed mixed type of adhesive and cohesive fracture in most of specimens. Within the limitation of this study, bond strength of adhesive resin cement between lithium disilicate glass-ceramic and dentin was not affected by provisional restorative and filling materials.