• 제목/요약/키워드: 접시형 태양열 집열기

검색결과 13건 처리시간 0.017초

공기식 흡수기를 이용한 5kW급 접시형 태양열 집열기의 열성능 해석 (Thermal Performance of Air Receiver filled with Porous Material for $5kW_t$ Dish Solar Collector)

  • 서주현;마대성;김용;서태범;강용혁;이상남;한귀영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.570-575
    • /
    • 2007
  • The thermal performance of the air receiver filled with porous material for 5kWt dish solar collector installed in Inha University, Korea, is experimentally investigated. The diameter of the parabolic dish is 3.2 m, and its focal length is 2 m. It consists of 10 small pieces of glasses which have their own curvatures, and the effective reflecting area is 5.9 m2. The reflectivity of the glass is 0.95, and the thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. A quartz window is installed at the receiver aperture to minimize the convective heat loss and prevent air leakages. In order to increase the heat transfer area, porous material (nickel-alloy) is inserted into the receiver. Air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. The volumetric flow rates of air are varied from 600 to 1200 L/min. The thermal efficiency of the receiver ranges from 82% - 92% depending upon the flow rate. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected. These results from the experiment will be useful for the applications to air heating receivers and solar reactors.

  • PDF

고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션 (Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor)

  • 고요한;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

태양열 발전용 스크롤 방식 스터링엔진 흡수기 특성 연구 (Study on the Characteristics of Scroll type Stirling Engine Receiver for Solar Thermal Power)

  • 서호영;김종규;이상남;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.62-67
    • /
    • 2009
  • This paper describes the characteristics of scroll type stirling engine receiver. Scroll type stirling engine operated scroll compressor and expander instead of piston. Pass dimension of the receiver was $14(W){\times}14(H)$ mm and total pass length was 5,049 mm. External dimension of the receiver was $300{\times}300mm$. The experimental facility consisted of parabolic dish concentrator, compressor to supply air, triplex air filter, and flowmeter. In this study, basic experimental conditions were set at a inlet pressure of 5 bar and volume flow rate of $25m^3/hr$. As a result, air temperature in receiver at each measuring position of point 1, 2, 3 were $241^{\circ}C$, $465^{\circ}C$, and $542^{\circ}C$ respectively at inlet pressure of 5.5 bar and volume flow rate of $24.6m^3/hr$. As DNI increasing, heat transfer coefficient of the receiver changed from $695W/m^2K$ to $827W/m^2K$. Average heat transfer coefficient of receiver in the experiment was $798W/m^2K$. In addition, receiver efficiency became about 83%.

  • PDF