• 제목/요약/키워드: 접시형 태양열 시스템

검색결과 26건 처리시간 0.016초

10 kW급 접시형 태양열발전시스템 사업모델 개발 및 운전특성 분석 (Development of 10 kW Dish-Stirling System for Commercialization and Analysis of Operating Characteristics)

  • 김종규;이상남;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.118-124
    • /
    • 2010
  • In order to develop commercial model of 10kW dish-Stirling solar thermal power system, modification for the exiting facility was taken for a year as a Leading Project in KIER. During the project, solar tracking system, control and monitoring system and high durability reflector were developed and long term operation were performed. The solar tracking system was tested for four months to investigate the degree of precision and adapted to the control system for an actual operation from October in 2009. The sun tracking accuracy of ${\pm}4$ mrad using modified control system was obtained and the system operated successfully during the experimental period. The monitoring system displays engine pressure, electric generation amounts, generator RPM, receiver temperatures, and etc. from Stirling engine and weather data of Direct Normal Irradiation, Horizontal Global Insolation, wind speed & direction, and atmosphere temperature from weather station. According to the operating results in a clear sky day, electric power of 6,890 W was generated at the DNI value of 850 W/$m^2$ and the averaged solar-to-electricity efficiency during a whole day reached to 18.99%. From the overall operating results, linear power generation trend could be observed with increasing DNI value. The solar-to-electricity efficiency achieved to 19% around the DNI value of 700 W/$m^2$ and increased to 20% when the DNI value goes up to 900 W/$m^2$.

접시형 태양열 집광 시스템을 이용한 열화학 사이클의 수소생산 (TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM)

  • 권해성;오상준;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.169-176
    • /
    • 2011
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction)and W-D (Water Decomposition)steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $NiFe_2O_4/m-ZrO_2$powder, was successfully achieved hydrogen production with 9 (10 with a Xe-light solar simulator, 2009, Kodama et al.) repeated cycles under field conditions. Two foam device used in this study were tested for validation before an experiment was performed. The lab scale ferrite-conversion rate was in the range of 24~76%. Two foam devices were designed to for structural stability in this study. In the results of the experiments, the hydrogen percentage of the weight of each foam device was 7.194 and $9.954{\mu}mol\;g^{-1}$ onaverage, and the conversion rates 4.49~29.97 and 2.55~58.83%, respectively.

  • PDF

NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산 (Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices)

  • 김철숙;조지현;김동연;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

접시형 태양열 시스템을 이용한 2단계 열화학 싸이클의 수소 생산과 PID 온도 제어 기법 연구 (A Study on Pill Temperature Control method and Hydrogen Production with 2-step Thermochemical Cycle Using Dish Type Solar Thermal System)

  • 김철숙;김동연;조지현;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.42-50
    • /
    • 2013
  • Solar thermal reactor was studied for hydrogen production with a two step thermochemical cycle including T-R(Thermal Reduction) step and W-D(Water Decomposition) step. NiFe2O4 and Fe3O4 supported by monoclinic ZrO2 were used as a catalyst device and Ni powder was used for decreasing the T-R step reaction temperature. Maintaining a temperature level of about $1100^{\circ}C$ and $1400^{\circ}C$, for 2-step thermochemical reaction, is important for obtaining maximum performance of hydrogen production. The controller was designed for adjusting high temperature solar thermal energy heating the foam-device coated with nickel- ferrite powder. A Pill temperature control system was designed based on 2-step thermochemical reaction experiment data(measured concentrated solar radiation and the temperature of foam device during experiment). The cycle repeated 5 times, ferrite conversion rate are 4.49~29.97% and hydrogen production rate is 0.19~1.54mmol/g-ferrite. A temperature controller was designed for increasing the number of reaction cycles related with the amount of produced hydrogen.

접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석 (Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant)

  • 서동혁;박영칠
    • 제어로봇시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

NiFe2O4/m-ZrO2 device를 이용한 고온 태양열 열화학 싸이클의 수소 생산 (Hydrogen production with high temperature solar heat thermochemical cycle using NiFe2O4/m-ZrO2 device)

  • 이진규;신일융;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.107-114
    • /
    • 2011
  • Two-step thermochemical cycle using ferrite-oxide($Fe_3O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The $m-ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30mL.