• Title/Summary/Keyword: 접시형 태양열 시스템

Search Result 26, Processing Time 0.025 seconds

A Study on Energy Distributions Produced by Dish Solar Concentrating System (접시형 태양열 집광 시스템의 에너지 분포 특성에 관한 연구)

  • 현성택;강용혁;천원기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.907-913
    • /
    • 2002
  • An experimental study on energy density distributions produced by dish solar concentrating system was performed to optimally design and rightly position a cavity receiver. This deemed also very useful to find and correct various errors associated with a concentrator. It is observed that the actual focal length is 2.17 m with a maximum energy density of 1.89 MW/$m^2$. By evaluating the position of flux centroid, it was found that there are errors within 2 cm from the target center. As a result of the percent power within radius, approximately 90% of the incident radiation is intercepted by about 0.06 m radius. The area concentration ratio normalized to 800 W/$m^2$ insolation and 90% mirror reflectivity was 347 suns. The total integrated power of 2467 W was measured under focal flux distributions, which corresponds to the intercept rate of 85.8%.

TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM and $CeO_2/NiFe_2O_4$ (접시형 태양열 집광 시스템과 산화세륨 및 페라이트산화물을 이용한 열화학 사이클의 수소생산)

  • Kwon, Hae-Sung;Oh, Sang-June;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.113-119
    • /
    • 2012
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction) and W-D (Water Decomposition) steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $CeO_2$ powder, was successfully achieved hydrogen production under field conditions. Through this experiment, we can analyze the characteristics of the catalyst and able to determine which is more advantageous thing to produce hydrogen compared with previous experiment that used ferrite-device.

  • PDF

Numerical investigation of natural convection heat loss in solar receiver for dish concentrating system (접시형 태양열 집광시스템용 흡수기의 자연대류 열손실 수치해석 연구)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Kim, Jong-Kyu;Kim, Jin-Soo;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.680-683
    • /
    • 2007
  • In dish concentrating system, natural convection heat loss occurs in cavity receiver. Heat loss mechanisms of conduction, convection, and radiation can reduce the system efficiency. To obtain the high efficiency, the receiver is to absorb the maximum of solar energy and transfer to the working fluid with maximum of heat losses. The convection heat loss is an important factor to determine the system performance. Numerical analysis of the convection heat loss of receiver was carried out for varing inclinaton angle from 0$^{\cdot}$ to 70$^{\cdot}$ with temperature range from 400$^{\cdot}C$ to 600$^{\cdot}C$ using the commercial software package, Fluent 6.0. The result of numerical analysis was comparable with convection heat loss model of solar receiver.

  • PDF

Thermal Performance of Air receiver with a Change of Flow direction for Dish Solar Collector (공기식 흡수기의 유동 방향에 따른 $5kW_t$급 접시형 태양열 집열기의 열성능 분석)

  • Seo, Joo-Hyun;Kang, Kyung-Moon;Lee, Ju-Han;Oh, Sang-June;Seo, Tae-Beom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.182-185
    • /
    • 2008
  • The thermal performance of air receiver with a change of flow direction for dish solar collector. This system is installed and operated in Incheon, Korea. The thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. Experiments are being carried out to investigate the thermal performance variation of the receivers with several design parameters such as the shape of the receiver, the flow directions and the flow rate of air. First, air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. Second, air flows into the backside of the receiver, Which is the forward side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 1 exit. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected.

  • PDF

Computational Heat Transfer Analysis of Dish Type Solar Receiver Using the Transient model (CFD를 이용한 접시형 태양열 집열기의 과도 열전달 모델 해석)

  • Oh, Sang-June;Lee, Ju-Han;Seo, Joo-Hyun;Lee, Jin-Gyu;Cho, Hyun-Seok;Seo, Tae-Beom
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.72-79
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical a. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing of the experimental and the numerical results, results of both are in good agreement. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Analysis of Transient Heat Transfer Characteristics of a Receiver for a Dish Type Solar Thermal System by using CFD (CFD를 이용한 접시형 태양열 집열기의 Transient 열전달 성능 해석)

  • Oh, Sang-June;Lee, Ju-Han;Seo, Joo-Hyun;Lee, Jin-Gyu;Cho, Hyun-Seok;Seo, Tae-Beom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.167-170
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Design and Construction Experiences of 10kWe Dish-type Solar Thermal Power Generation System (Dish형 집광장치 이용 10kWe급 태양열 발전시스템 설계 및 시공 사례)

  • Lee, Sang-Nam;Kang, Yong-Heack;Jo, Dok-Ki;Yu, Chang-Kyun;Yoon, Hwan-Ki;Kim, Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.684-687
    • /
    • 2005
  • KIER has been running a demonstration project for 10kWe solar thermal power generation. the project is to build and operate the first solar thermal power generation system in Korea. For concentrating solar thermal energy $40m^2$ dish type concentrator was adapted and a stirling engine is going to be integrated to the system for power production. At the moment building the dish concentrator including mirror and sun tracking system was completed and it's performance are being closely evaluated. This paper will introduce some detailed designs and construction procedures which we have experienced so far.

  • PDF

Computational Heat Transfer Analysis of High Temperature Solar Receiver (수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석)

  • Kim, Tae-Jun;Oh, Sang-June;Lee, Jin-Gyu;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.49-54
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with $5kW_{th}$ Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along the this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

A Study on Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle by Heat Recovery (열회수에 따른 고온 태양열 열화학 싸이클의 수소 생산에 관한 연구)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.13-22
    • /
    • 2017
  • Two-step water splitting thermochemical cycle with $CeO_2/ZrO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2/ZrO_2$ foam device depending on heat recovery of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2/ZrO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. Resultantly, the quantity of hydrogen generation increased by 52.02% when the carrier gas of Thermal-Reduction step is preheated to $200^{\circ}C$ and, when the $N_2/steam$ is preheated to $200^{\circ}C$ in the Water-Decomposition step, the quantity of hydrogen generation increased by 35.85%. Therefore, it is important to retrieve the heat from the highly heated gases discharged from each of the reaction spaces in order to increase the reaction temperature of each of the stages and thereby increasing the quantity of hydrogen generated through this.

Analysis of Transient Heat Transfer Characteristics of Dish-Type Solar Receiver System (접시형 태양열 흡수기의 Transient 열전달 특성에 대한 수치해석 연구)

  • Lee, Ju-Han;Seo, Joo-Hyun;Oh, Sang-June;Lee, Jin-Kyu;Seo, Tae-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2094-2099
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF