• Title/Summary/Keyword: 점화 시스템

Search Result 194, Processing Time 0.024 seconds

The implementation of the firing control system considering a flight sequence control technique (비행시퀀스제어기법을 적용한 점화통제시스템 구현)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-48
    • /
    • 2008
  • One of main functions of the firing control system applied to a rocket propulsion test has been to provide electric current for ignition of a solid rocket motor. This paper describes the design and implementation of an enhanced firing control system for ground propulsion test that can also control and verify various types of squib events and flight sequences.

Solid Chemical Hydride-Based Hydrogen Ignition System for Aluminum Powder Combustion (알루미늄 분말 연소를 위한 고체 화학수소화물 기반 수소 점화 시스템)

  • Park, Kilsu;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.88-95
    • /
    • 2019
  • The hydrogen torch ignition system has been widely used to ignite a pure aluminum for aluminum powder combustion system because of its simple ignition method. However, the conventional hydrogen torch ignition system has a disadvantage that requires a high-pressure tank to supply hydrogen, which leads to the increase of the weight. In order to solve this problem, a hydrogen ignition system using $NaBH_4$, a solid chemical hydride, was designed in this study. The thermal decomposition of $NaBH_4$ was initiated approximately at $500^{\circ}C$ and hydrogen was generated. The parameters affecting the thermal decomposition characteristics of $NaBH_4$ were analyzed and the aluminum combustion test was carried out using $NaBH_4$-based hydrogen ignition system to study the applicability to a practical aluminum-combustion propulsion system.

An Experimental Study on the Reducing Method of Spurious Emission at the Spark Plug Cable (스파크 플러그 케이블에서 복사되는 불요 전자파 감소 방안에 대한 실험적 연구)

  • Kang, Sang-Won;Choe, Gwang-Je;Hur, Jung
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.10-15
    • /
    • 2013
  • This paper, we analyzed that the measured data of the radiated power spectrum of electromagnetic waves of the normal spark ignition system and the spark ignition system with feed through type ceramic condenser. The results show that the strength of power spectrum radiated from the system with feed through type ceramic condenser is weaker than the normal system, and the density of power spectrum radiated from the system with feed through type ceramic condenser is smaller than the normal system. From these results, the feed through type ceramic condenser can reduce the electromagnetic waves radiating from the spark ignition system which is the spurious emission, and it can be concluded that the ignition coil of the spark ignition system generating high voltage pulse is equivalent to the radio frequency oscillator which is oscillating high frequency from a electronic point of view.

Development of Ignition System for MEMS Solid Propellant Thruster (MEMS 고체 추진제 추력기의 점화 시스템 개발)

  • Lee, Jong-Kwang;Park, Jong-Ik;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.91-94
    • /
    • 2007
  • The fabrication and firing test of the ignition system for a micro solid propellant thruster are described in the present paper. Pt igniter coil was patterned on the glass membrane that was fabricated by the wet etching process. The thickness of Pt layer was $2000{\AA}$ and the width of igniter pattern was $40{\mu}m$. The thickness and diameter of glass membrane were $15{\mu}m$ and 1 mm, respectively. Ignition test was performed. Successful ignition of HTPB/AP propellant was obtained with an ignition delay of 1.6 s at an input voltage of 12 V. The ignition energy was estimated to be 1.4 J.

  • PDF

Analysis of Electromagnetic Wave for Spark Plug Cable in Distributorless Spark Ignition System (무배전기식 불꽃 점화 시스템의 점화 플러그 케이블에서 발생되는 전자파의 분석)

  • Kang, Sang-Won;Choe, Gwang-Je;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • It is an analysis about electromagnetic wave which is generated from a Spark plug cable of Distributorless spark ignition system. In case of Distributorless spark ignition system, high frequency generation is an ignition coil and Spark plug cable and Spark plug could be activated with electromagnetic wave radiation antenna. I calculated a resonant frequency with HFSS by measuring length of Spark plug cable and Spark plug. The antenna was considered as ${\lambda}/4$ monopole antenna in this calculation. According to power spectrum measurement analysis of engine room radiated electromagnetic wave and calculated Resonant frequency, it is possible to find out that the Distributorless spark ignition system radiates high frequency energy in certain frequency band.

A Study on the Simultaneous Ignition and Flow Distribution of Hybrid Rocket Clustering Model (하이브리드 로켓 클러스터링 모델의 동시 점화 및 유량 분배 연구)

  • Park, Sunjung;Moon, Keunhwan;Lee, Changwoo;Lee, Yeongseok;Kang, Soyoung;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.781-786
    • /
    • 2017
  • This study aims to acquire a basic clustering technology of hybrid rocket motor for lunar lander, including the oxidizer flow distribution characteristic and the simultaneous ignition characteristic. The experimental setups were established to conduct a series of ground firing test of a clustered motor. The gaseous oxygen (GOX) and the HDPE (High Density PolyEthylene) were used as the oxidizer and the solid fuel, respectively. Experimental results which are the simultaneous pyrotechnic ignition characteristic, the oxidizer distribution characteristic and the pressure traces of each combustion chamber imply that the hybrid rocket clustered motor works successfully.

  • PDF

Evaluation of Ignition Performance of Green Hypergolic Propellant (친환경 접촉점화 추진제 점화 성능 평가)

  • Sunjin Kim;Minkyu Shin;Jeongyeol Cha;youngsung Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Hypergolic propellants, which can ignite themselves without an ignition source, are difficult to handle due to their corrosiveness and toxicity. Therefore, it is necessary to develop green hypergolic propellants with little or no toxicity. In this study, basic research on green hypergolic ignition propellants was conducted. With 95% hydrogen peroxide as an oxidizer and CNU_HGFv1 as a fuel, ignition and combustion characteristics of propellants were evaluated through a drop test, an ignition test, and a combustion test. As a result of the drop test, the ignition delay time was 9.7 ms. It was 27 ms in the ignition test, which was fast enough to be used as a propellant. As a result of the combustion test, a combustion efficiency of 95.4~98.1% was achieved at about 11.7 bar. It was confirmed that fast and stable combustion was possible without hard start or combustion instability.

A Study on Multi-Stage Catalytic Ignitor for Hybrid Rocket Auto Ignition (하이브리드 로켓 자동점화를 위한 다단촉매점화기에 관한 연구)

  • Choi, Woojoo;Kim, Jincheol;Kwon, Minchan;Yoo, Yeongjun;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.117-119
    • /
    • 2017
  • The multi-stage catalytic igniter for hybrid rocket auto ignition is described in this paper. After charging the catalyst and pre-heating the first stage, the $N_2O$ was supplied at the first stage with the low mass flow rate, and then the $N_2O$ with the high flow rate was supplied into the second stage. Even though the $N_2O$ flow rate was high, it was decomposed by supplying the high temperature gas which was evolved from the $N_2O$ decomposition in the first stage. This multi-stage ignitor resulted in the decrease of the ignition time in comparison with the previous ignitor, and confirmed the possibility of $N_2O$ decomposition with the high flow rate using the multi-stage catalytic-ignition system.

  • PDF

Experimental Investigation of Steam Plasma Characteristics for High Energy Density Metal Powder Ignition Using Optical Emission Spectroscopy Method (OES 방법을 이용한 고에너지 금속 분말 점화용 스팀 플라즈마 특성에 관한 실험적 고찰)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.545-550
    • /
    • 2012
  • High Energy density metal powder has high melting point of oxide film. By this, the ignition source that can make a thermal effect of high-temperature during short time is needed to overcome ignition disturbance mechanism by oxide film. So effective ignition does not occurred with hydrocarbon ignitor, $H_2-O_2$ ignitor, high power laser. But steam plasma can be generate about 5000 K temperature field in short order. Because a steam plasma uses steam as the working gas, it is environmental-friendly and economical. Therefore in this study, we analyze steam plasma temperature field and radical species with optical emission spectroscopy method in order to apply steam plasma ignitor to metal combustion system and cloud particle ignition was identified in visual.

  • PDF

The Enhanced Analysis Algorithm for an EMFG's Operation (EMFG의 개선된 동작해석 알고리즘)

  • Kim, Hee-Jung;Yeo, Jeong-Mo;Seo, Kyung-Ryong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.371-378
    • /
    • 2002
  • The EMFG (Extended Mark Flow Graph) is known as a graph model for representing the discrete event systems. In this paper, we introduce input/output matrixes representing the marking variance of input/output boxes when each transition fires in an EMFG, and compute an incidence matrix. We represent firing conditions of transitions to a firing condition matrix for computing a firable vector, and introduce the firing completion vector to decide completion of each transition’s firing. By using them, we improve an analysis algorithm of the EMFG’s operation to be represented all the process of EMFG’s operation mathematically. We apply the proposed algorithm to the system repeating the forward and reverse revolution, and then confirm that it is valid. The proposed algorithm is useful to analysis the variant discrete event systems.