• Title/Summary/Keyword: 점화안전회로

Search Result 6, Processing Time 0.019 seconds

A Design of Fire-Command Synchronous Satellite Pyrotechnic Circuit (점화 명령에 동조된 인공위성 파이로테크닉 회로 설계)

  • Koo, Ja Chun;Ra, Sung Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.81-92
    • /
    • 2013
  • The satellite includes many release mechanisms such as solar array deployment, antenna deployment, cover to protect contamination in scientific equipment, pyro value of the propulsion subsytem, and bypass device in Li-Ion cell module. A drive the initiators is a critical to the successful mission because the initiators of release mechanism driving by the pyrotechnic circuit is operated in single short. The pyrotechnic circuit has to provide switching network for safety. A typical switching network has defect consisting of high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit is required some form of power conditioning to reduce the peak power demanded from the bus if the initiators are to be fired from the main bus. This paper design a pyrotechnic circuit synchronized to the fire-command to activate the fire switch to overcome use high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit provides a current limited widow pulse for fire current synchronized to the fire-command to insure that fire switch will only carry the current but never switch it. The current limited widow pulse for fire current can be possible to use low current rating and light mass switch in switching network. The current limit function in the pyrotechnic circuit reduces supply voltage to initiator and provides the effect of power conditioning function to reduce peak bus power. The pyrotechnic circuit to apply satellite development on geostationary orbit is verified the function by test in development model.

저항회로의 개폐불꽃에 의한 폭발성 가스의 점화한계에 관한 연구

  • 김재욱;이춘하
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.129-134
    • /
    • 1997
  • 가스폭발사고를 방지하기 위하여 사용하는 방폭형 전기기기중에서 본질안전 방폭구조는 폭발위험장소에 설치되는 전기기기 및 배선의 어떤 부분에서 정상동작 및 사고시(단락, 지락, 단선 등)에 발생하는 불꽃, 아크, 과열이 주위에 있는 폭발성 가스에 점화되지 않도록 한 구조로서, 회로의 전압과 전류를 폭발성 가스의 점화한계 이하가 되도록 구성하는 원리이며 국내외에서 사용이 증가추세에 있다. (중략)

  • PDF

A Study on Minimum Ignition Energy by Controlled Discharge Energy (방전에너지 제어에 의한 최소점화에너지의 고찰)

  • 최상원;대택돈
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.303-308
    • /
    • 2003
  • 가연성 물질의 최소점화에너지(Minimum Ignition Energy; MIE)를 아는 것은 화학공정 등의 안전성 평가에 중요한 것이다. 현재 MIE의 측정에는 주로 용량성 불꽃방전이 이용되고 있다. 용량이 큰 커패시터를 이용한 방전에서는 MIE가 크게 되는 경향이 있고, MIE가 회로정수에 의존한다는 것이 실험적으로 알려져 있다. 이 현상은 방전회로의 시정수와 점화를 위한 에너지의 수송시간과의 관계에 의해 이론적으로 설명하는 것이 가능하게 되었다.(중략)

  • PDF

The Design of Squib Circuit using Hybrid Interlock (하이브리드 인터락을 적용한 점화회로 설계)

  • Jang, Bu-Cheol;Cho, Kil-Seok;Shin, Jin-Beom;Koo, Bong-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.404-412
    • /
    • 2014
  • We proposed a design method for squib current supply & interlock circuits in guided-missile fire control systems. In order to design squib current supply circuits, various missile squib loads including line resistance and squib devices have to be considered in advance minimizing probability of redesign of circuits and reducing the development cost by implementing the most proper squib current supply circuit. Also, we presented a hardware interlock logic instead of the commonly used software safety logic to improve the safety of guided-missile fire control systems. The proposed squib interlock circuit enhances safety requirements of guided-missile fire control systems. We confirmed that simulation and measurement results of the proposed design method are the same as theoretical analysis results.

Identifying Sensitive Components and Analyzing Reliability Process to Output Characteristic for an EAFD Circuit System According to Changes of Internal Component Values (전자식 점화안전장치 회로 시스템 내부 소자 변화에 따른 민감 소자 확인 및 출력 특성에 대한 신뢰성 분석 프로세스)

  • Lim, Tae Heung;Byun, Gangil;Jang, Seung-gyo;Back, Seungjun;Son, Youngkap;Choo, Hosung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.697-703
    • /
    • 2018
  • In this paper, we analyzed the operation of the ignition circuit for electronic arm and fire device(EAFD), and investigated the sensitive elements of the circuit system. For reliability analysis, the EAFD ignition circuit was modeled using the PSpice simulation tool, and the output results of the circuit were examined by changing the tolerance of each circuit element. Monte Carlo simulation was used by maintaining the values of the observed sensitive elements at ${\pm}10%$ of the original values and adjusting the values of the other components according to a random distribution. The histogram results of the output peak currents and pulse widths were represented by Weibull and Burr type XII function fittings in three cases(element values are +10 %, 0 %, -10 % of original). For the output peak currents, mean values were 1.0028, 1.0034, and 1.0050, where the variance values were calculated as 0.0398, 0.0396, and 0.0290 using the Weibull function fitting, respectively. For pulse widths, the mean values of 0.9475, 0.9907, and 1.0293 with the variance values of 0.0260, 0.0251, and 0.0238 were obtained using the Burr Type XII function fittings.

The Design and Test of the Electronic Arm Fire Device Circuit (전자식 점화안전장치 회로부 설계 및 검증)

  • Gim, Hakseong;Hwang, Jung-Min;Jang, Seung-gyo;Kim, Jae-Hoon;Hwang, Dae-Gyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.857-864
    • /
    • 2018
  • This paper describes about the circuit design and test of the electronic Arm Fire Device. Electronic arm fire device consists of igniter, circuit and housing case and it operates without the actuator such as torque motor or solenoid. A high-voltage DC-DC converter was used to generate the voltage for initiating the LEEFI(Low Energy Exploding Foil Initiator). The MEMS switch was used to detect the acceleration that occurs when missile is launched, and the circuit was designed considering the size, performance, and specification of the electronic devices. The performance test was conducted to verify the designed circuit and we confirmed that it operates well.