• Title/Summary/Keyword: 점핑로봇

Search Result 5, Processing Time 0.024 seconds

Design and Simulation of Small Bio-Inspired Jumping Robot (생체모방 소형 점핑로봇의 설계 및 시뮬레이션)

  • Ho, Thanhtam;Choi, Sung-Hac;Lee, Sang-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1145-1151
    • /
    • 2010
  • In this paper, we discuss the design and simulation of a jumping-robot mechanism that is actuated by SMA (shape memory alloy) wires. We propose a jumping-robot mechanism; the structure of the robot is inspired by the musculoskeletal system of vertebrates, including humans. Each robot leg consists of three parts (a thigh, shank, and foot) and three kinds of muscles (gluteus maximus, rectus femoris, and gastrocnemius). The jumping capability of the robot model was tested by means of computer simulations, and it was found that the robot can jump to about four times its own height. This robot model was also compared with another model with a simpler structure, and the performance of the former, which was based on the biomimetic design, was 3.3 times better than that of the latter in terms of the jumping height. The simulation results also verified that SMA wires can be suitable actuators for small jumping robots.

Review of Biomimetic Designs for the Development of Jumping Robots (점핑로봇 개발을 위한 생체모방적 설계 방법의 리뷰)

  • Ho, Thanhtam;Seung, Hyun-Soo;Lee, Sang-Yoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • Jumping is considered as a suitable way for realizing fast locomotion on the ground. As for the issue of developing mobile robots that can jump up and forward enough for accomplishing useful missions, this paper first introduces two types of jumping principles that are found in biological animals or insects. We also present how the principles are applied to several jumping robot examples that include outcomes for the past a few years and also our recent one. Design ideas and features of the robots are explained and compared in order to discuss important issues and guidelines for the design of jumping robots.

Jumping Control of a Cat Robotic System by Model Transformation (모델변환에 의한 고양이 로봇 시스템의 점핑제어)

  • Suh, Jin-Ho;Yamakita, Masaki;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2427-2429
    • /
    • 2002
  • 본 논문에서는, 지붕위로 뛰어오르기 위하여 벽의 반동을 이용하는 고양이의 운동상태를 흉내내어 수직의 방향으로 운동하는 고양이 로봇 시스템을 연구한다. 또한 이러한 로봇 시스템의 3-link 부분시스템의 운동은 slider-link에서 구속되어지고, 또한 singular자세를 쉽게 피할 수 있는 운동계획방법(motion planning method)을 제안한다. 제안되어진 연구결과는 수직동작에 대한 메카니즘에 유용한 방법이고 이론적 개념, 모델링, 그리고 제어를 논의한다. 마지막으로, 모의실험을 통한 결과로서 제안되어진 방법의 유용성을 설명한다.

  • PDF

A Study on Motion Planning Generation of Jumping Robot Control Using Model Transformation Method (모델 변환법을 이용한 점핑 로봇 제어의 운동경로 생성에 관한 연구)

  • 서진호;산북창의;이권순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.120-131
    • /
    • 2004
  • In this paper, we propose the method of a motion planning generation in which the movement of the 3-link leg subsystem is constrained to a slider-link and a singular posture can be easily avoided. The proposed method is the jumping control moving in vertical direction which mimics a cat's behavior. That is, it is jumping toward wall and kicking it to get a higher-place. Considering the movement from the point of constraint mechanical system, the robotic system which realizes the motion changes its configuration according to the position and it has several phases such as; ⅰ) an one-leg phase, ⅱ) in an air-phase. In other words, the system is under nonholonomic constraint due to the reservation of its momentum. Especially, in an air-phase, we will use a control method using state transformation and linearization in order to control the landing posture. Also, an iterative learning control algorithm is applied in order to improve the robustness of the control. The simulation results for jumping control will illustrate the effectiveness of the proposed control method.