• Title/Summary/Keyword: 점토 강도

Search Result 586, Processing Time 0.024 seconds

Prediction of Physical Characteristics of Cement-Admixed Clay Ground (점토-시멘트 혼합 지반의 물리적 특성 예측)

  • Park, Minchul;Jeon, Jesung;Jeong, Sangguk;Lee, Song
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.529-536
    • /
    • 2014
  • Physical characteristics of cement-admixed clay such as water content, specific gravity, unit weight and void ratio are main factors for strength, compressibility and prediction of consolidation behavior. In the past, the physical characteristics of admixed soils could be understanded through complex laboratory tests and field survey after construction. In this study, the tests were performed with conditions such as clay water contents 0%-170%, cement contents 5%-25% and curing period 3-90days after that analyzed for changes which are water content, specific gravity unit weight and void ratio of admixed soils. A prediction of properties through mechanical relationships with clay in situ water content, cement content and curing period could be proposed using the test results. The prediction equation of void ratio of admixed soils was derived using void ratio equation in geotechnical engineering and compared with test results of bangkok clay and then this study could be verified.

Consolidation and Strength Properties of Clay Subjected to High Temperature Histories (고온이력을 받는 점토의 압밀 및 전단특성)

  • Lee Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.41-49
    • /
    • 2005
  • Recently, ground has been often exposed to high temperature environments such as chemical ground improvement, thermal energy storage system, and underground nuclear waste disposal system. Since the behavior of clay is sensitive to temperature change, the studies on the engineering properties of clay subjected to high temperature history may be important. This paper presents the mechanical behavior of clay with high temperature condition. $\bar{CU}$ tests using a high temperature and pressure triaxial compression test apparatus were carried out in order to investigate characteristics of deformation, shear strength, compression and consolidation of clay. During tests, the temperature was varied from $20^{\circ}C,\;50^{\circ}C,\;75^{\circ}C,\;80^{\circ}C\;to\;100^{\circ}C$.

Refinement of Low-grade Clay using Iron-reducing Bacteria [II] : Removal Characteristics of Iron Impurity from Various Porcelain Clays (철환원세균을 이용한 저품위 점토의 개량 [II] : 도자기 점토 종류별 철불순물 제거 특성)

  • 조경숙;류희옥
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.208-213
    • /
    • 2000
  • Using three types of porcelain clays such as White, Blue, and Yellow clays, which were used as raw materials for Bae씨a, C Chungja, and common porcelains, the biological refinement by an enrichment culture of iron reducing bacteria was studied. | In the biological clay refining, amounts of leached iron increased as increasing sucrose $\infty$ncentration, which was s supplemented as a carbon and electron donor source for cell growth and iron reduction. Total amounts of the leached iron a and specific rate of iron reduction were dependent on the types of the clay. Strength and chromaticity of refined clays which a are important properties required for porcelain clays were improved as increasing sucrose concentration. The degree of s shrinking, however, did not changed. the redness among the chromaticity of refined clays is favorably reduced through the r ripening by the iron reducing bacteria. Considering iron removal efficiency and the change of physical properties, the optimal c concentration of sucrose was 4%(w/w) in the clay.

  • PDF

Reinforced Polymer/Clay Nanocomposite Foams with Open Cell Prepared via High Internal Phase Emulsion Polymerization (고내상 에멀션 중합에 의해 제조된 열린 기공을 갖는 고장도 고분자/점토 나노복합 발포체)

  • Song, In-Hee;Kim, Byung-Chul;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Reinforced open cell micro structured foams were prepared by the polymerization of high internal phase emulsions incorporating inorganic thickeners. Organoclays were used as oil phase thickener, and sodium montmorillonite was used as aqueous phase thickener. Rheological properties of emulsions increased as oil phase thickener concentration and agitation speed increased, due to the reduced drop size reflecting both competition between continuous and dispersed phase viscosities and increase of shear force. Drop size variation with thickener concentration could be explained by a dimensional analysis between capillary number and viscosity ratio. Upon the foams polymerized by the emulsions, compression properties, such as crush strength and Young's modulus were measured and compared. Among the microcellular foams, the foam incorporated with an organoclay having reactive group showed outstanding properties. It is speculated that the exfoliated silicate layers inside polystyrene matrix, resulting in nanocomposite foam, are the main reason why this foam has enhanced properties.

Distribution of Clay Minerals in Soils on the Northern Drainage Basin of the Nakdong River (낙동강 북부 배수유역의 토양 점토광물 분포)

  • Lee, Bong-Ho;Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.349-354
    • /
    • 2008
  • Semiquantitative mineralogical analysis of clays in soils was performed to understand the distribution of clay minerals in relation to bedrock lithology on the northern basin of the Nakdong River. The soils developed on the granitic bedrocks have high contents of kaolinite and smectite. mite was the major clay mineral in the soils from sedimentary bedrocks, with minor kaolinite, smectite, and intergrade (interstratified chlorite-smectite or hydroxy-interlayed vermiculite) clay minerals. Illite and kaolinite contents of the soils from metamorphic and volcanic bedrocks fall between those of the soils from the granitic bedrocks and those of the soils from the sedimentary bedrocks. The clay mineralogy of the soils depends on the compositions of bedrock minerals and their susceptibility to chemical weathering. The weathering of plagioclase resulted in the high kaolinite content of the soils derived from granitic bedrocks, while the soils derived from sedimentary bedrocks are abundant in residual illite.

The Change in Geotechnical Properties of the Deposited Clay Contaminated by Leachate from Waste Disposals (침출수로 오염된 퇴적점토의 역학적 특성변화)

  • Ha, Kwang-Hyun;Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.43-54
    • /
    • 2006
  • In this paper, the uniaxial, triaxial compression tests and consolidation tests on the clay sample substituted initial pore water for pollutant were performed to evaluate the change in geotechnical properties of the contaminated clay. The contaminant transport analysis on embankment type landfill using the MT3D model was also performed to evaluate the extent of transport and diffusion. There was tendency that strength, compressibility and permeability has increased with the increase in the concentration of NaCl solution. The increase in the strength and compressibility of sample saturated with leachate was higher than samples saturated with NaCl solution, but in the permeability coefficient was lower. As the result of contaminant transport analysis, the predicted concentration was in high with the increase in the initial concentration of $Cl^-$ ion and increased in a non-linear form. The transportation distance calculated with use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with the increase in the initial concentration.

  • PDF

Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks (인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측)

  • 이윤규;윤여원;강병희
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The anisotropy of soils has an important effect on stress-strain behavior. In this study, an attempt has been made to implement artificial neural network model for modeling the stress-strain relationship and predicting the undrained shear strength of normally consolidated clay with varying consolidation pressure ratios. The multi-layer neural network model, adopted in this study, utilizes the error back-propagation loaming algorithm. The artificial neural networks use the results of undrained triaxial test with various consolidation pressure ratios and different effective vertical consolidation pressure fur learning and testing data. After learning from a set of actual laboratory testing data, the neural network model predictions of the undrained shear strength of the normally consolidated clay are found to agree well with actual measurements. The predicted values by the artificial neural network model have a determination coefficient$(r^2)$ above 0.973 compared with the measured data. Therefore, this results show a positive potential for the applications of well-trained neural network model in predicting the undrained shear strength of cohesive soils.

  • PDF

Unconfined Compression Strengh Characteristics and Degree of Disturbance of Busan Marine Clay (부산 해성 점토의 일축압축강도 특성 및 교란도에 관한 연구)

  • Kim, Byoung-Il;Lee, Seung-Won;Lee, Seung-Hyun;Cho, Sung-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.29-36
    • /
    • 2005
  • In this study, relations among unconfined compressive strength, strain at maximum strength and depth were compared with each other. Test specimen is marine clay originated from the place near Ga-duck island in Busan city. In addition, influence of impure material contained in specimen and that of total core recovery(TCR) on unconfined compressive strength and degree of disturbance were investigated. As a result of tests, unconfined compressive strength decreases as strain corresponding to maximum strength increases. Also, the deeper the sampling depth and the bigger the TCR, the unconfined compressive strength increases. Especially, as the TCR increases, the unconfined compressive strength Increases and quality of specimen is enhanced.

The Effect of the Mineralogical Featuresof Aggregates in the Bonding Force and Workability of the Concrete (골재의 암석학적 특징이 부착성과 작업성에 미치는 영향-화강암, 풍화화강암, 안산암, 석회암-)

  • Um, Tai-Sun;Choi, Sang-Heul
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.207-216
    • /
    • 1997
  • 암석학적 특징이 다른 골재를 사용할 때 콘크리트의 기본특성에 영향을 골재품질 시험과 함께, 화학분석, X.R.D, D.T-T.G.A S.E.M, 편광현미경, 실체현미경관찰등을 하여 조사하므로서 암질특성과 콘크리트의 기본특성과의 관계를 해석하였다. 연구결과, 운모 또는 점토계 광물과 같은 풍화광물이 혼재하지 않고 거대 결정을 갖ㄴ 화강암계 골재는 풍화 화강암, 안산암, 석회암, 골재에 비해 골재품질이 저조해도 작업성이나 강도특성이 우수하였다. 이는 골재의 표면거칠기와 구형도가 양호해 골재와 시멘트페이스트의 부착력이 강화되기 때문이며 고강도콘크리트제조를 위한 골재의 암질로는 거대 결정으로 구성되고 풍화광물이 없는 암질을 선정하는 것이 중요하다. 결정이 크고 풍화광물(운모, 점토계 고아물)이 혼재되지 않은 화강암 골재를 사용한 고강도콘크리트는 석회암, 안산암 골재를 사용한 콘크리트에 비해 150-200kg/$\textrm{cm}^2$이상의 강도증진과 작업성이 향상되었다.

Comparison of the Behavior Characteristics between Sand Compaction Pile and Pack Pile by the Triaxial Compression Tests (삼축압축시험을 통한 모래다짐말뚝 공법과 팩말뚝 공법의 거동특성 비교)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4012-4017
    • /
    • 2010
  • In this study, a series of triaxial compression tests(CU) were performed with artificially remolded sand-pack-clay and sand-clay composite soils at 10% and 20% replacement ratio to compare the shear strength and behavior characteristics between sand compaction pile and pack pile. From the test results, the shear strength of the pack pile is much higher than the that of the sand compaction pile.