• Title/Summary/Keyword: 점착현상

Search Result 104, Processing Time 0.031 seconds

Sensory and Instrumental Texture Properties of Songpypyuns and Mosipulpyuns According to the Cooking Conditions (여러가지 조리방법에 따른 송피떡과 모시풀떡의 관능적, 기계적 텍스쳐 특성)

  • 김순임;한영실
    • Korean journal of food and cookery science
    • /
    • v.9 no.3
    • /
    • pp.187-194
    • /
    • 1993
  • Effects of the steaming conditions on textural and sensory quality of rice cakes were investigated with respect to storage period. All steaming methods except microwave oven cooking were not remarkably decreased in moisture content during storage. Degree of gelatinization was shown much higher in the both of rice cakes prepared by the rice-cake steamer and steaming pot than those of microwave oven cooking sample. Effect of the different steaming conditions on the rice cake quality resulted that the sensory profiles (consistency, moistness and cohesiveness) were apparently improved in the cakes prepared with rice-cake steamer and steaming pot cooking than microwave oven cooking. The highest overall quality was shown in the samples cooked by rice-cake steamer. The rice cakes prepared by microwave oven showed the highest hardness and chewiness in the textural profiles, whereas the rice cakes prepared by the rice-cake steamer and the steaming pot showed the high gumminess.

  • PDF

Model Tests and GIMP (Generalized Interpolation Material Point Method) Simulations of Ground Cave-ins by Strength Reduction due to Saturation (불포화 강도 유실에 의한 지반함몰 현상의 모형 실험 재현 및 일반 보간 재료점법을 활용한 수치적 모사)

  • Lee, Minho;Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.93-105
    • /
    • 2017
  • This study presents direct shear tests, model tests, and numerical simulations to assess the effect of reduction of soil strength because of saturation during formation of ground cave-in caused by damaged sewer pipe lines. The direct shear test results show that the saturation affects the cohesion of soil significantly although it does not influence the friction angle of soil. To experimentally reproduce ground cave-in, the model tests were performed. As ground cave-ins were accompanied with extreme deformation, conventional finite element method has difficulty in simulating them. The present study relies on generalized interpolation material point method, which is one of meshless methods. Although there are differences between the model test and numerical simulation caused by boundary conditions, incomplete saturation, and exclusion of groundwater flow, similar ground deformation characteristics are observed both in the model test and numerical simulation.

Earth pressures acting on vertical circular shafts considering arching effects in c-${\phi}$ soils: I. Theory (c-${\phi}$ 지반에서의 아칭현상을 고려한 원형수직터널 토압: I. 이론)

  • Kim, Do-Hoon;Lee, Dea-Su;Kim, Kyung-Ryeol;Lee, Yong-Hee;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.117-129
    • /
    • 2009
  • Several researches have been done to estimate the earth pressure on a vertical circular shaft considering three dimensional arching effect and verified them by conducting model tests. However, any equation suggested so far is not applicable in case of multi-layered soils and/or C-${\phi}$ soils. In this study, new equation for estimating the earth pressure acting on the vertical shaft in c-${\phi}$ soils is proposed. A parametric study is performed to investigate the significance of the cohesion when estimating the coefficient of earth pressure in C-${\phi}$ soils and estimating earth pressures in vertical shafts. A method which can estimate the earth pressure on vertical shafts in layered soils is also proposed by assuming a failure surface in layered soils and using the modified equation. This paper is Part I of companion papers focusing on the theoretical aspect of model developments; the experimental verification will be made in Part II.

Liquid Uptake and Methanol Transport Behaviour of PVDF/SPEEK/TiO2 Hybrid Membrane for DMFC (DMFC용 PVDF/SPEEK/TiO2 하이브리드 막의 수분함량과 메탄올 전이현상)

  • You, Sun-Kyung;Kim, Han-Joo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.177-180
    • /
    • 2005
  • A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nano particles content. Their liquid uptake, methanol permeability and proton conductivity as a function of inorganic oxide content were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and liquid uptake. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.

A Three-Dimensional Progressive Failure Model for Joints Considering Fracture Mechanics and Subcritical Crack Growth in Rock (암석파괴역학에 의한 3차원 절리면의 진행성 파괴 모델)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • A three dimensional rock joint element was developed considering fracture mechanics and subcritical crack growth to simulate non-linear behavior and the progressive failure of rock joints. Using this 3-D joint element, joint shear tests of rock discontinuities were simulated by a numerical method. The asperities on the joint surface began to fail at stress levels lower than the rock fracture toughness and continued progressively due to subcritical crack growth. As a result of progressive failing in each and every asperity, the joint showed non-linear stress-time behavior including stress hardening/softening and the reaching of a residual stress.

A Study of New Wuick Tool-Life Tesing Method(I) - The Analysis of the Wear Behavior for Carbide Tool - (새로운 급속 工具壽命試驗法에 관한 硏究 (I) - 초경공구의 유동거동 분석-)

  • 오양균;정동윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.223-231
    • /
    • 1986
  • During the past decade, the Quick Tool-Life Testing Method has been studied. However, a generalized theory and testing method for the quantitative measurement of tool wear have not been developed yet. Among many factors to affect the tool wear, the flank wear is regarded as a main factor. In this study, the behavior of the flank wear for carbide tool was studied as a preceding step to present a simple method for Quick Tool-Life Testing, and it was found that the flank wear varies in direct proportion to cutting time, and the following general equation is obtained for the flank wear curves with respect to cutting time and velociety.

Study on Shear Strength Using a Portable Dynamic Cone Penetration Test and Relationship between N-Nc (소형동적콘관입시험을 이용한 전단강도 산정 및 N-Nc 상관관계 연구)

  • Kim, Hyukho;Lim, Heuidae
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.145-157
    • /
    • 2017
  • Because of Recent intensive rainfall, nationally landslides and slope failure phenomenon has been frequently occur. Providing proposed-measures to the natural disasters that occur in these localities and the slope, must be derived ground of strength parameters(shear strength) as a design input data. However, it is such as extra deforestation and a lot of economic costs in order to make the access to the current area and the slopes ground survey is required. Thus, by small dynamic cone penetration test machine using the human to carry in the field, it is possible to easily measure the characteristics and strength constant of the ground of more than one region. In this study through researching analysis of the domestic and foreign small dynamic cone penetration test method, it has proposed a cone material and test methods suitable for the country. Cone penetration test Nc in the field has comparated with analysis of the value and the standard penetration test N value. And, in addition to this, direct shear test and borehole shear test were performed by depth, bedrock, and soil type and passing #200 and the correlation of the Nc value. In particular, in the present study, for the sandy soil that has distict distribute in mountain, it is proposed relation of shear strength corresponding to the Nc value (cohesion and internal friction angle) in order to calculate such effective ground shear strength.

Numerical modeling of brittle failure of the overstressed rock mass around deep tunnel (심부 터널 주변 과응력 암반의 취성파괴 수치모델링)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.469-485
    • /
    • 2016
  • The failure of rock mass around deep tunnel, different from shallow tunnel largely affected by discontinuities, is dominated by magnitudes and directions of stresses, and the failures dominated by stresses can be divided into ductile and brittle features according to the conditions of stresses and the characteristics of rock mass. It is important to know the range and the depth of the V-shaped notch type failure resulted from the brittle failure, such as spalling, slabbing and rock burst, because they are the main factors for the design of excavation and support of deep tunnels. The main features of brittle failure are that it consists of cohesion loss and friction mobilization according to the stress condition, and is progressive. In this paper, a three-dimensional numerical model has been developed in order to simulate the brittle behavior of rock mass around deep tunnel by introducing the bi-linear failure envelope cut off, elastic-elastoplastic coupling and gradual spread of elastoplastic regions. By performing a series of numerical analyses, it is shown that the depths of failure estimated by this model coincide with an empirical relation from a case study.

Predictions of Fouling Phenomena in the Axial Compressor of Gas Turbine Using an Analytic Method (해석적 방법을 이용한 가스터빈 축류 압축기의 파울링 현상 해석)

  • Song, Tae-Won;Kim, Dong-Seop;Kim, Jae-Hwan;Son, Jeong-Rak;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1721-1729
    • /
    • 2001
  • The performance of gas turbines is decreased as their operating hours increase. Fouling in the axial compressor is one of main reasons for the performance degradation of gas turbine. Airborne particles entering with air at the inlet into compressor adhere to the blade surface and result in the change of the blade shape, which is closely and sensitively related to the compressor performance. It is difficult to exactly analyze the mechanism of the compressor fouling because the growing process of the fouling is very slow and the dimension of the fouled depth on the blade surface is very small compared with blade dimensions. In this study, an improved analytic method to predict the motion of particles in compressor cascades and their deposition onto blade is proposed. Simulations using proposed method and their comparison with field data demonstrate the feasibility of the model. It if found that some important parameters such as chord length, solidity and number of stages, which represent the characteristics of compressor geometry, are closely related to the fouling phenomena. And, the particle sloe and patterns of their distributions are also Important factors to predict the fouling phenomena in the axial compressor of the gas turbine.

The Mechanical Properties of Rocks Distributed at a Metal Mine in Jeongseon (정선지역 철광산에 분포하는 암석의 역학적 특성)

  • Kim, Jong-Woo;Park, Chan;Kim, Ju-Hwan;Heo, Seok;Kim, Dong-Kyu;Lee, Dong-Kil;Jo, Young-Do;Park, Sam-Gyu
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.231-243
    • /
    • 2015
  • In this study, both in-situ stress measurements and a lot of laboratory rock tests were conducted at a metal mine in Jeongseon, Korea. The stress ratio obtained from in-situ stress measurements showed a tendency to decrease according to depth below surface and its average value was 1.10. The mechanical properties such as unit weight, absorption ratio, porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, shore hardness, friction angle and cohesion were investigated for the four different rocks mainly distributed at a studied mine, which were dolomite, felsite, granite and magnetite. The mechanical properties of the four different rocks were compared by means of statistical analyses, whereupon the felsite and the granite turned out to have more strength characteristics than the magnetite. The correlation of mechanical properties was also investigated, whereupon a few results against the general correlation were found out. The failure criteria of the four different rocks were finally discussed by means of both Mohr-Coulomb criterion and Hoek-Brown criterion.