로지스틱 회귀분석은 통계학 등의 분야에서 예측을 위한 기술 혹은 변수 간의 상관관계를 설명하기 위하여 오랫동안 사용되어 왔다. 이러한 로지스틱 회귀분석 방법에서 현재 각 속성들은 목적 값에 대하여 동일한 중요도를 가지고 있다. 본 연구에서는 이러한 가중치 계산을 좀더 세분화하여 각 속성의 값이 서로 다른 중요도를 가지는 새로운 학습 방법을 제시한다. 알고리즘의 성능을 최대화하는 각 속성값 가중치의 값을 계산하기 위하여 점진적 하강법을 이용하여 개발하였다. 본 연구에서 제안된 방법은 다양한 데이터를 이용하여 실험하였고 속성값 기반 로지스틱 회귀분석 방법은 기존의 로지스틱 회귀분석보다 우수한 학습 능력을 보임을 알 수 있었다.
본 논문은 장애물 회피 능력을 갖는 자발적 주행 로봇 (Khepera)을 제어하는 재귀 신경망을 진화와 학습의 상호 적응에 의해 결정하는 방안을 제시한다. 제안한 동시 적응 방안은 다음 두 가지 성질을 갖는다. 유전자 알고리즘에 의해 해집단내 여러 개의 신경망 제어기들은 전역적 탐색을 수행하여 점진적으로 장애물과의 충돌이 적게 일어나도록 진화되고, 동시에 각 신경망 제어기는 상보적 재강화 역전파 (CRBP: Complementary Reinforcement Backpropagation) 학습에 의해 국부적 탐색을 수행하여 주행 특성이 로봇이 처한. 외부 환경에 적응되어진다. 실험 결과, 학습과 결합한 진화에 의해 얻어진 신경망 제어기가 진화자체만에 의해 얻어진 신경망 제어기보다 더 나은 충돌 회피 능력을 보여 주며, 원하는 주행 성능에 보다 빨리 도달하는 것을 확인할 수 있다.
대부분의 교사학습 알고리즘은 수치형 변수 처리의 어려움을 해결하기 위해 전처리 단계에서 연속형 변수를 범주형으로 변환시킨 후 적용된다. 이러한 전처리 단계를 전역적 범주화라 하며 빈즈(Bins)라는 클래스 분포 리스트를 이용한다. 그러나 대부분의 전역적 범주화 기법은 단일 빈즈를 필요로 하기 때문에 데이타가 대용량이고 범주화를 수행할 변수의 범위가 매우 클 경우, 단일 빈즈를 생성하기 위해 많은 정렬 및 병합을 수행해야한다. 또한, 기존의 방법은 일괄처리 방식으로 범주화를 수행하기 때문에 새로운 데이타가 추가되면 이 데이타가 반영된 범주를 생성하기 위해 처음부터 범주화를 다시 수행해야한다. 본 논문은 이러한 문제점을 해결하기 위해 샘플 분할 포인트를 추출하고 이로부터 범주화를 수행하는 기법을 제안한다. 본 논문의 접근 방법은 단일 빈즈를 생성하기 위한 병합이 필요 없기 때문에 대용량 데이타에 대한 범주화를 수행할 때 효율적이다. 본 연구에서는 실제 데이타와 가상의 데이타를 이용하여 기존의 방법과 비교 실험하였다.
주어진 배경 이미지로부터 전경 객체를 분리하는 것을 목표로 하는 배경 차분화 기법에 관한 많은 연구가 있어 왔다. 최근에 발표된 몇 가지 통계 기반 배경 차분화 기법들은 동적인 환경에서 동작할 수 있을 정도로 안정된 성능을 보이는 것으로 보고되고 있다. 그러나 이들 기법은 일반적으로 매우 많은 계산 자원을 요구하며, 객체의 명확한 윤곽을 획득하는데 있어서는 아직 어려움이 있다. 본 논문에서는 점진적으로 변화하는 배경을 모델링하기 위해 복잡한 통계 기법을 적용하는 대신 간단한 이동-평균 기법을 사용한다. 또한 픽셀별로 할당되는 다중의 임계치 대신 유전자 학습에 의해 최적화되는 하나의 전역적 임계치를 사용한다. 유전자 학습을 위해 새로운 적합도 함수를 정의하여 학습하고 이를 이용하여 이미지의 분할 결과들을 평가한다. 본 논문의 시스템은 웹 카메라가 장착된 개인용 컴퓨터에서 구현하였으며, 실사 이미지들에 대한 실험 결과에 의하면 기존의 가우시안 믹스쳐 방식보다 우수한 성능을 보이는 것으로 나타났다.
본 연구는 온라인 다중 객체 추적 환경에서 모든 객체의 상태(예. 위치 및 크기) 및 identifications (IDs)를 추적하는 문제를 다룬다. 프레임들 간 검출 결과들을 연관하여 객체들의 궤도를 점진적으로 완성하는 tracking-by-detection 접근법을 기반으로 온라인 다중 객체 추적 문제를 해결하고자 한다. 정확한 온라인 연관을 수행하기 위해 이산 푸리에 변환과 부분 최소 제곱법(partial least square, PLS) 분석을 기반으로 하는 새로운 온라인 외형 학습 방법을 제안한다. 즉, 먼저 주파수 도메인에서 추적에 용이한 객체 특징량을 추출하기 위해 추적 객체에 대한 이미지를 푸리에 이미지로 변환한다. 나아가 객체간의 주파수 특징을 보다 잘 구별할 수 있도록 PLS기반 부분 공간을 학습한다. 제안된 외형 학습을 최신 신뢰도 기반 연관 기법과 결합하였고, 다중 객체 추적평가 분야에서 국제적으로 공인된 MOT 벤치마크 챌린지 데이터 셋에서 최신 다중 객체 추적 알고리즘과 비교평가를 수행하였다.
당구는 재미있는 스포츠이지만, 처음 입문한 초심자가 득점 가능한 경로를 계산하고 올바르게 공을 쳐서 보낼 정도로 숙련되기까지의 진입 장벽이 높은 편이다. 당구 초심자가 어느 정도 수준에 도달하기 위해선 지속적인 집중과 훈련을 필요로 하는데, 적절한 동기 부여 요소가 없다면 흥미를 잃어버리기 쉽다. 본 연구는 스테레오 카메라와 VR 헤드셋을 결합한 몰입도 높은 증강 현실 플랫폼 상에서 당구 경로 안내 및 시각 효과를 통해 초심자의 흥미를 유도하고 당구 학습을 가속하는 것을 목표로 두었다. 이를 위해 영상처리를 활용하여 당구공 배치를 인식하고 Unity Engine의 물리 시뮬레이션을 통해 경로 탐색과 시각화를 수행해 실제와 유사한 경로 예측을 구현했다. 이는 당구에 처음 입문하는 초심자가 경로 설계에 대한 부담 없이 공을 올바르게 보내는 훈련에만 집중할 수 있게 만들며, 나아가 오랜 시간 알고리즘이 제안하는 경로를 익힘으로써 점진적으로 당구 숙련도를 높일 수 있다는 점에서 AR 당구의 학습 보조 도구로서의 가능성을 확인할 수 있었다.
요즘, 인터넷 등장 이후 폭발적으로 증대되는 웹 정보를 효율적으로 사용하기 위한 시스템들이 요구되고 있다. 이러한 요구를 해결하기 위해 개발된 시스템들은 서비스 정보의 질을 향상시키기 위하여 클러스터링 기법을 이용하고 있다. 클러스터링은 무질서한 데이터들의 상호 연관관계를 정의하고 이를 통하여 보다 체계적으로 데이터를 군집화하는 것이다. 클러스터링을 이용한 시스템은 비슷한 내용을 묶어 사용자에게 제공함으로, 사용자는 보다 효율적으로 정보를 파악할 수 있다. 그래서 이전 연구에서 대량의 데이터를 효율적으로 클러스터링 하기 위하여 통합 클러스터링 방식을 제안하였다. 이 방식은 COBWEB 알고리즘을 이용하여 초기 클러스터를 생성한 후 Etzioni 알고리즘을 이용하여 클러스터링을 생성하는 방식이다. 본 논문은 이러한 기존의 통합 클러스터링 방식의 정확성과 효율성을 높이기 위하여, 다음 두 가지 방식을 제안한다. 첫째, 클러스터할 데이터의 속성의 가중치클 고려한 클러스터링 방식을 제안한다. 둘째, 기존의 클러스터링 방식의 효율성을 지원하기 위하여, 초기 클러스터를 생성하는 평가 함수를 재정의한다. 본 논문에서 제안하는 클러스터링 방식은 방대한 양의 데이터를 효율적으로 처리 할 수 있으며 데이터의 입력 순서의 의존도를 줄여, 데이터를 효과적으로 클러스터, 양질의 사용자 프로파일 구축에 도움을 주게 된다.
본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.
대표적인 소셜 네트워크 서비스(SNS)인 트위터의 내용을 분석하여 자동으로 트윗에 나타난 사용자의 감성을 분석하고자 한다. 기계학습 기법을 사용해서 감성 분석 모델을 생성하기 위해서는 각각의 트윗에 긍정 또는 부정을 나타내는 감성 레이블이 필요하다. 그러나 사람이 모든 트윗에 감성 레이블을 붙이는 것은 비용이 많이 소요되고, 실질적으로 불가능하다. 그래서 본 연구에서는 "감성 레이블이 있는 데이터"와 함께 "감성 레이블이 없는 데이터"도 활용하기 위해서 반감독 학습기법인 self-training 알고리즘을 적용하여 감성분석 모델을 생성한다. Self-training 알고리즘은 "레이블이 있는 데이터"의 레이블이 있는 데이터를 활용하여 "레이블이 없는 데이터"의 레이블을 확정하여 "레이블이 있는 데이터"를 확장하는 방식으로, 분류모델을 점진적으로 개선시키는 방식이다. 그러나 데이터의 레이블이 한번 확정되면 향후 학습에서 계속 사용되므로, 초기의 오류가 계속적으로 학습에 영향을 미치게 된다. 그러므로 조금 더 신중하게 "레이블이 없는 데이터"의 레이블을 결정할 필요가 있다. 본 논문에서는 self-training 알고리즘을 이용하여 보다 높은 정확도의 감성 분석 모델을 생성하기 위하여, self-training 중 "감성 레이블이 없는 데이터"의 레이블을 결정하여 "감성 레이블이 있는 데이터"로 확장하기 위한 3가지 정책을 제시하고, 각각의 성능을 비교 분석한다. 첫 번째 정책은 임계치를 고려하는 것이다. 분류 경계로부터 일정거리 이상 떨어져 있는 데이터를 선택하고자 하는 것이다. 두 번째 정책은 같은 개수의 긍/부정 데이터를 추가하는 것이다. 한쪽 감성에 해당하는 데이터에만 국한된 학습을 하는 것을 방지하기 위한 것이다. 세 번째 정책은 최대 개수를 고려하는 것이다. 한 번에 많은 양의 데이터가 "감성 레이블이 있는 데이터"에 추가되는 것을 방지하고 상위 몇%만 선택하기 위해서, 선택되는 데이터의 개수의 상한선을 정한 것이다. 실험은 긍정과 부정으로 분류되어 있는 트위터 데이터 셋인 Stanford data set에 적용하여 실험하였다. 그 결과 학습된 모델은 "감성 레이블이 있는 데이터" 만을 가지고 모델을 생성한 것보다 감성분석의 성능을 향상 시킬 수 있었고 3가지 정책을 적용한 방법의 효과를 입증하였다.
본 논문은 한국어 음성인식에서 음향모델의 성능개선을 위한 기초적 연구로서 결정트리 상태 클러스터링에 의한 HM-Net (Hidden Markov Network)의 구조결정 알고리즘을 이용한 음성인식에 관한 연구를 수행하였다. 한국어는 다른 언어와 비교하여 많은 문법과 변이음이 존재하는데, 국어 음성학에서 정의한 다양한 변이음을 조사하고, 음소결정트리를 위한 음소 질의어 집합을 작성하였다. 본 논문의 HM-Net 구조결정 알고리즘의 아이디어는 SSS (Successive State Splitting) 알고리즘의 구조를 가지면서 미리 작성해 둔 문맥의존 음향모델의 상태를 다시 분할하는 방법이다. 즉, 모델의 각 상태위치마다 음소 질의어 집합에 의해 음소결정트리를 생성하고, PDT-SSS (Phonetic Decision Tree-based SSS) 알고리즘에 의해 문맥의존 음향모델의 상태열을 다시 학습하는 방법이다. 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하기 위해, 국어공학센터 (KLE)의 452단어와 항공편 예약에 관련된 YNU200 문장을 대상으로 음성인식 실험을 수행하였다. 인식실험 결과, 음소, 단어, 연속음성인식 실험에서 상태분할을 수행한 후 상태수의 변화에 따라 인식률이 점진적으로 향상됨을 확인하였다. 상태수 2,000일 때 음소, 단어 인식률이 평균 71.5%, 99.2%를 각각 얻었으며, 연속음성인식률은 상태수 800일 때 평균 91.6%를 얻었다. 또한 HM-Net 구조결정 알고리즘의 파라미터 공유관계를 비교하기 위해 상태공유를 수행하는 HTK를 이용한 단어인식 실험을 수행하였다. 실험결과, HTK를 이용한 문맥의존 음향모델에 비해 평균 4.0%의 인식률 향상을 보여, 본 논문에서 적용한 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.