• Title/Summary/Keyword: 점성 토크

Search Result 14, Processing Time 0.017 seconds

Aerodynamic Drag Prediction of a Bearingless Rotor Hub (무베어링 로터 허브의 공기역학적 항력 예측)

  • Kang, Hee-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.655-661
    • /
    • 2012
  • In this study, aerodynamic drag of a bearingless rotor hub was predicted by computational fluid dynamics methodology using unstructured overset mixed meshes. The calculated results showed that the drag due to pressure forces rather than the viscous drag act as a major factor on both the fuselage and rotor hub, and the drag acting on the torque tube accounted for the largest portion in the hub drag. It was also found the hub drag accounted for 39 ~ 41% of the fuselage drag. Finally, the result confirmed the drag of the designed rotor hub satisfied the requirement of the aerodynamic hub drag by comparing with the drag trend of developed helicopter.

Highly Concentrated Polymer Bonded Explosive Simulant: Rheology of Exact/Dechlorane Suspension (고농축 복합화약 시뮬란트: Exact/Dechlorane 현탁계의 유변물성)

  • Lee, Sangmook;Hong, In-Kwon;Lee, Jae Wook;Lee, Keun Deuk
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.286-292
    • /
    • 2014
  • The rheology of highly concentrated polymer bonded explosive (PBX) simulant was studied. An energy material, polyethylene plastomer (Exact$^{TM}$) having similar properties to poly(BAMO-AMMO) was selected as a binder. Dechlorane with similar properties to RDX (Research Department eXplosive) was chosen as a filler. Mixing behavior in a batch melt mixer was investigated. During mixing a large amount of heat of viscous dissipation was generated and a continuous decrease in torque was observed when the filler content was above 70 v%. It was believed due to wall slip phenomena. From the SEM images, the fillers were well dispersed and the effect of mixing condition affected slightly on the dispersion. Owing to distinct shear thinning behavior of the suspensions, measuring viscosity of highly filled suspensions was possible in a high shear rate capillary rheometer though it was impossible even in a low shear rate plateplate rheometer.

Vane Shear Test on Nakdong River Sand (베인 전단시험기를 이용한 낙동강모래의 마찰각에 관한 연구)

  • Park, Sung-Sik;Zhou, An;Kim, Dong-Rak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.463-470
    • /
    • 2016
  • A vane shear test (VST) is a simple testing method for determining an undrained shear strength of cohesive soils by minimizing soil disturbance. In this study, the VST was used to determine a shear strength of sand. Dry Nakdong River sand was prepared for loose and dense conditions in a cell and then pressurized with 25, 50, 75 or 100 kPa from the surface of sand. A vane (5 cm in diameter and 10 cm in height) was rotated and a torque was measured within sand. When a torque moment by vane and friction resistance moment by sand is assumed to be equalized, a friction angle can be obtained. When a vane rotates within clay, a uniform undrained shear strength is assumed to be acting on cylindrical failure surface. On the other hand, when it is applied for sand, the failure shape can be assumed to be an octagonal or square column. The relationship between measured torque and resistant force along assumed failure shapes due to friction of sand was derived and the internal friction angle of sand was determined for loose and dense conditions. For the same soil condition, a series of direct shear test was carried out and compared with VST result. The friction angle from VST was between 24-42 degrees for loose sand and 33-53 degrees for dense sand. This is similar to those of direct shear tests.

Evaluation of Screw Conveyor Model Performance depending on the Inclined Angle by Discrete Element Method (개별요소법을 활용한 경사각에 따른 스크루 컨베이어 모델 성능 평가)

  • Park, Byungkwan;Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.379-393
    • /
    • 2019
  • For the economical construction of a tunnel by TBM, the selection of TBM optimized with the various project conditions is important, and also necessary to predict the performances of selected TBM in advance. This study was conducted to comprehensively evaluate the performance of the EPB shield TBM screw conveyor by the discrete element method. The sticky particles were used for the excavated material models, and screw conveyor with 11 different inclined angles were simulated to evaluate the performance depending on the different inclined angles. The four different rotational speed conditions of the screw were used, and torque, required power, extra energy for muck discharge, and the muck discharge rate were selected as four performance indicators. As a result, the optimized inclined angle was selected, and selected angle accords with the fact that EPB shield TBM screw conveyor is generally installed and adjusted at the inclined angle between 20.0° and 30.0° in the field.