• Title/Summary/Keyword: 점군 데이터

Search Result 94, Processing Time 0.025 seconds

Three-dimensional Digital Restoration and Surface Depth Modeling for Shape Analysis of Stone Cultural Heritage: Haeundae Stone Inscription (석조문화유산의 형상분석을 위한 3차원 디지털복원과 표면심도 모델링:해운대 석각을 중심으로)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.87-94
    • /
    • 2012
  • This study was focused on digital restoration and surface depth modeling applying the three-dimensional laser scanning system of the Haeundae Stone Inscription. Firstly, the three-dimensional digital restoration carried out acquiring of point cloud using wide range and precision scanner, thereafter registering, merging, filtering, polygon mesh and surveyed map drawing. In particular, stroke of letters, inscribed depth and definition appearing the precision scanning polygon was outstanding compared with ones of the wide range polygon. The surface depth modeling completed through separation from polygon, establishment of datum axis, selection of datum point, contour mapping and polygon merging. Also, relative inscribed depth (5~17mm) and outline by the depth modeling was well-defined compared with photograph and polygon image of the inscription stone. The digital restoration technology merging wide range and precision scanning restored the total and detailed shape of the Stone Inscription quickly and accurately. In addition, the surface depth modeling visibly showed unclear parts from naked eye and photograph. In the future, various deteriorations and surrounding environment change of the Stone Inscription will be numerically analyze by periodic monitoring.

An Analysis of 3D Mesh Accuracy and Completeness of Combination of Drone and Smartphone Images for Building 3D Modeling (건물3D모델링을 위한 드론과 스마트폰영상 조합의 3D메쉬 정확도 및 완성도 분석)

  • Han, Seung-Hee;Yoo, Sang-Hyeon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.69-80
    • /
    • 2022
  • Drone photogrammetry generally acquires images vertically or obliquely from above, so when photographing for the purpose of three-dimensional modeling, image matching for the ground of a building and spatial accuracy of point cloud data are poor, resulting in poor 3D mesh completeness. Therefore, to overcome this, this study analyzed the spatial accuracy of each drone image by acquiring smartphone images from the ground, and evaluated the accuracy improvement and completeness of 3D mesh when the smartphone image is not combined with the drone image. As a result of the study, the horizontal (x,y) accuracy of drone photogrammetry was about 1/200,000, similar to that of traditional photogrammetry. In addition, it was analyzed that the accuracy according to the photographing method was more affected by the photographing angle of the object than the increase in the number of photos. In the case of the smartphone image combination, the accuracy was not significantly affected, but the completeness of the 3D mesh was able to obtain a 3D mesh of about LoD3 that satisfies the digital twin city standard. Therefore, it is judged that it can be sufficiently used to build a 3D model for digital twin city by combining drone images and smartphones or DSLR images taken on the ground.

Review of Remote Sensing Technology for Forest Canopy Height Estimation and Suggestions for the Advancement of Korea's Nationwide Canopy Height Map (원격탐사기반 임분고 추정 모델 개발 국내외 현황 고찰 및 제언)

  • Lee, Boknam;Jung, Geonhwi;Ryu, Jiyeon;Kwon, Gyeongwon;Yim, Jong Su;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.435-449
    • /
    • 2022
  • Forest canopy height is an indispensable vertical structure parameter that can be used for understanding forest biomass and carbon storage as well as for managing a sustainable forest ecosystem. Plot-based field surveys, such as the national forest inventory, have been conducted to provide estimates of the forest canopy height. However, the comprehensive nationwide field monitoring of forest canopy height has been limited by its cost, lack of spatial coverage, and the inaccessibility of some forested areas. These issues can be addressed by remote sensing technology, which has gained popularity as a means to obtain detailed 2- and 3-dimensional measurements of the structure of the canopy at multiple scales. Here, we reviewed both international and domestic studies that have used remote sensing technology approaches to estimate the forest canopy height. We categorized and examined previous approaches as: 1) LiDAR approach, 2) Stereo or SAR image-based point clouds approach, and 3) combination approach of remote sensing data. We also reviewed upscaling approaches of utilizing remote sensing data to generate a continuous map of canopy height across large areas. Finally, we provided suggestions for further advancement of the Korean forest canopy height estimation system through the use of various remote sensing technologies.

A Research on Improving the Shape of Korean Road Signs to Enhance LiDAR Detection Performance (LiDAR 시인성 향상을 위한 국내 교통안전표지 형상개선에 대한 연구)

  • Ji yoon Kim;Jisoo Kim;Bum jin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.160-174
    • /
    • 2023
  • LiDAR plays a key role in autonomous vehicles, and to improve its visibility, it is necessary to improve its performance and the detection objects. Accordingly, this study proposes a shape for traffic safety signs that is advantageous for self-driving vehicles to recognize. Improvement plans are also proposed using a shape-recognition algorithm based on point cloud data collected through LiDAR sensors. For the experiment, a DBSCAN-based road-sign recognition and classification algorithm, which is commonly used in point cloud research, was developed, and a 32ch LiDAR was used in an actual road environment to conduct recognition performance tests for 5 types of road signs. As a result of the study, it was possible to detect a smaller number of point clouds with a regular triangle or rectangular shape that has vertical asymmetry than a square or circle. The results showed a high classification accuracy of 83% or more. In addition, when the size of the square mark was enlarged by 1.5 times, it was possible to classify it as a square despite an increase in the measurement distance. These results are expected to be used to improve dedicated roads and traffic safety facilities for sensors in the future autonomous driving era and to develop new facilities.