• 제목/요약/키워드: 점군 데이터

검색결과 96건 처리시간 0.023초

지상 라이다의 점군 데이터를 이용한 2차원 및 3차원 실내 GIS 도면 반자동 구축 기법 개발 (Semi-Automatic Method for Constructing 2D and 3D Indoor GIS Maps based on Point Clouds from Terrestrial LiDAR)

  • 홍성철;정재훈;김상민;홍승환;허준
    • 대한공간정보학회지
    • /
    • 제21권2호
    • /
    • pp.99-105
    • /
    • 2013
  • 도시의 발전 및 성장으로 인해 건물은 고층화, 대형화, 복잡화 되고 있으며, 효율적인 공간정보의 활용 및 공유를 위해 실내외 GIS의 중요성은 증가되고 있다. 하지만 도면 생성기술은 지형 및 도시의 2차원 및 3차원 도면 생성에 대해서 주로 선행되었으며, 건물 실내공간의 도면 구축 기술에 대한 연구는 미비한 실정이다. 본 연구에서는 지상라이다로부터 취득된 실내 점군데이터를 이용한 2차원 및 3차원 실내 도면 반자동 구축 기법을 제안하였다. 제안한 기법은 전처리, 2차원 도면생성, 3차원 도면생성 단계로 이루어진다. 전처리 단계는 실내 공간의 높이를 측정하고 점군데이터의 노이즈를 식별한다. 2차원 도면 생성 단계에서는 외곽선 추출격자와 정제과정을 이용하여 평면도를 생성한다. 3차원 도면 생성 단계에서는 전처리 과정에서 측정된 높이와 평면도를 이용하여 3차원 와이어프레임 모델을 생성한다. 전처리 과정에서 식별된 노이즈 데이터는 3차원 와이어 프레임 모델과 함께 3차원 실내 도면의 세부 모델링에 이용된다. 제안한 기법은 실내 복도를 측량한 점군데이터에 적용하여 결과를 확인하였으며, 향후 실내 GIS 구축을 위한 2차원 및 3차원 도면 생성에 활용될 수 있을 것으로 기대된다.

고해상도 위성영상을 활용한 자동화된 건물 영역 추출 하이브리드 접근법 (A Hybrid Approach for Automated Building Area Extraction from High-Resolution Satellite Imagery)

  • 안효원;김창재;이효성;권원석
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.545-554
    • /
    • 2019
  • 본 연구에서는 기존의 연구들에서 주로 사용하여왔던 현장측량, 항공사진, 라이다 데이터 등의 취득이 원천적으로 어려운 지역에 대한 건물 영역 추출을 구현하고자 하였다. 이에 접근성에 큰 영향을 받지 않는 거의 유일한 데이터인 고해상도 위성영상을 활용한 방법론을 제시하고자 한다. 영상정합을 통해 추출되는 점군 데이터 또는 DSM(Digital Surface Models)을 활용한 건물 영역 추출은 데이터내의 높은 잡음과 다수의 빈 영역으로 인해 그 정확성에 한계를 보이고 있다. 따라서 본 연구에서는 영상 정합을 통해 얻어진 3차원 점군 데이터, 영상의 색상 및 선형 정보를 결합하여 건물 영역 추출을 수행하는 하이브리드식 접근법을 제안하였다. 일차적으로 다중영상정합으로 얻어진 3차원 점군 데이터로부터 지면점과 비지면점을 분리하고, 비지면점으로부터 초기 건물 대상지를 추출한다. 이후, 영상의 색상기반 분할을 수행하여 얻어진 결과와 초기 건물 대상지를 결합하여, 색상분할기반 건물 대상지를 추출한다. 이어서 영상의 선형 추출 및 공간 분할정보를 이용하여 최종적인 건물 영역을 선정하게 된다. 본 논문에서 제시한 건물 영역 자동 추출 방법론은 Correctness: 98.44%, Completeness: 95.05%, 위치오차: 1.05m 정도의 성능을 보임을 확인하였으며, 더불어 직각형태 이상의 복잡한 건물 영역도 잘 추출함을 확인하였다.

재난현장조사 공간정보 웹 가시화를 위한 3차원 맵핑시스템 개발 (Development of 3D Mapping System for Web Visualization of Geo-spatial Information Collected from Disaster Field Investigation)

  • 김성삼;노현주;신동윤;이준우;김현주
    • 대한원격탐사학회지
    • /
    • 제36권5_4호
    • /
    • pp.1195-1207
    • /
    • 2020
  • GeoWeb 기술이 발전하면서 재난관리 분야에서도 웹을 통한 2D/3D 공간정보 서비스에 대한 관심과 활용도가 높아지고 있다. 본 논문은 재난사고 현장에서 수집된 다양한 공간정보를 웹 환경에서 시각화하기 위한 3D 공간정보 맵핑 플랫폼 구축에 관한 연구로서, 웹 개발 표준기술인 HTML5/WebGL과 오픈소스를 활용하여 재난사고 현장에서 다양한 형태로 수집된 2D/3D 공간 데이터와 대용량의 LiDAR 점군 데이터에 대한 웹기반의 공간정보 맵핑 서비스 방안을 제시하였다. 첫째, 오픈소스인 GeoServer의 WMS 서비스와 PostGIS를 이용하여 수집된 재난현장 조사 2D 데이터를 공간 DB로 구축한 후 웹 환경에서 렌더링하였다. 둘째, 웹 환경에서 대용량 3D 점군 데이터를 효율적으로 렌더링하기 위하여 다중 해상도의 옥트리 구조를 이용하여 점군 데이터를 2D 타일로 단순화하는 Potree 알고리즘을 적용하였다. 마지막으로 OpenLayers3를 기반으로 3차원 지도를 제어 및 측정하기 위한 기본·응용 기능을 Graphic User Interface(GUI)로 구현하여 2D/3D 공간정보의 웹 시각화를 위한 3D 웹 맵핑 파일럿 시스템을 개발하였다. 향후, 재난현장의 각종 2D 조사 데이터 및 다양한 공간영상정보를 구축된 웹기반 3차원 공간정보시스템에 중첩·표출함으로써 재난사고 과학조사 및 분석 업무에 활용될 수 있을 것으로 기대된다.

지상라이다 데이터를 이용한 구조물 모델링 기법 연구 (Study of Structure Modeling from Terrestrial LIDAR Data)

  • 이경근;정경훈;김기두
    • 대한전자공학회논문지SP
    • /
    • 제48권1호
    • /
    • pp.8-15
    • /
    • 2011
  • 본 논문에서는 지상라이다에서 획득한 3차원 점군데이터로부터 구조물을 모델링하는 알고리듬을 제안한다. 지상라이다 점군 데이터는 항공라이다의 경우와 달리 목표 구조물의 크기와 비슷한 다양한 장애물이 존재하고 데이터의 밀도, 거리 등의 특성이 다르기 때문에 항공라이다에서 사용된 기존의 알고리듬을 그대로 적용하기가 곤란하다. 제안한 방법에서는 색상정보와 호프변환을 이용하여 구조물을 추출하는 기법을 기반으로 주어진 필드데이터를 여러 개의 클러스터로 구분한다. 클러스터 데이터의 우선순위에 따라서 Delaunay triangulation 기법을 차례대로 적용하여 모델링을 수행한다. 제안한 방법은 클러스터 단위로 모델링을 진행하므로 잡음에 의한 영향을 최소화할 수 있으며 사용자가 원하는 개수만큼의 클러스터를 선택함으로써 모델링의 수준을 대화식으로 조정할 수 있다는 장점이 있다.

교량의 3차원 측정을 위한 UAV 비디오와 사진의 표정 분석 (Orientation Analysis between UAV Video and Photos for 3D Measurement of Bridges)

  • 한동엽;박재봉;허정원
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.451-456
    • /
    • 2018
  • 시설물의 유지 관리 및 모니터링에 UAVs (Unmanned Aerial Vehicles)의 활용이 확대되고 있다. 안전 점검을 위한 시설물의 외관 상태 평가를 위하여 고해상도 영상을 취득하는 것이 필요하며, 넓은 지역을 빠르게 취득하기 위하여 비디오 데이터로 취득할 필요가 있다. 일반적으로 비디오 데이터에는 위치 정보가 포함되지 않아, 검사 개체의 실제 크기에 대한 정량적 분석이 어렵다. 본 연구에서는 교량 시설물을 대상으로 비디오 프레임과 기준 사진의 정합을 이용하여 교량의 3차원 점군(point cloud) 데이터의 활용성을 평가하고자 한다. 드론을 이용하여 비디오와 사진을 취득하고, 기준 사진과의 특징점 정합을 통하여 비디오 프레임의 외부 표정 요소를 생성하였다. 실험 결과 비디오 프레임 데이터는 기준 사진과 유사한 표정 정확도를 얻었으며, 표정된 프레임 데이터를 이용하여 생성된 점군 데이터는 교량의 형상 및 크기를 잘 표현하였다. 향후 다양한 조건의 정합 실험을 통하여 결과물의 안정성이 확인되면, 비디오 기반의 시설물 모델링 및 점검에 효과적으로 적용될 것으로 기대된다.

건설현장 3차원 점군 데이터 정합 정확성 향상을 위한 중첩비율 분석 (Analysis of overlap ratio for registration accuracy improvement of 3D point cloud data at construction sites)

  • 박수열;김석
    • 한국BIM학회 논문집
    • /
    • 제11권4호
    • /
    • pp.1-9
    • /
    • 2021
  • Comparing to general scanning data, the 3D digital map for large construction sites and complex buildings consists of millions of points. The large construction site needs to be scanned multiple times by drone photogrammetry or terrestrial laser scanner (TLS) survey. The scanned point cloud data are required to be registrated with high resolution and high point density. Unlike the registration of 2D data, the matrix of translation and rotation are used for registration of 3D point cloud data. Archiving high accuracy with 3D point cloud data is not easy due to 3D Cartesian coordinate system. Therefore, in this study, iterative closest point (ICP) registration method for improve accuracy of 3D digital map was employed by different overlap ratio on 3D digital maps. This study conducted the accuracy test using different overlap ratios of two digital maps from 10% to 100%. The results of the accuracy test presented the optimal overlap ratios for an ICP registration method on digital maps.

점군 데이터를 활용한 옹벽의 단면 수치 정보 자동화 도출 (Automated Derivation of Cross-sectional Numerical Information of Retaining Walls Using Point Cloud Data)

  • 한제희;장민서;한형서;조형준;신도형
    • 한국BIM학회 논문집
    • /
    • 제14권2호
    • /
    • pp.1-12
    • /
    • 2024
  • The paper proposes a methodology that combines the Random Sample Consensus (RANSAC) algorithm and the Point Cloud Encoder-Decoder Network (PCEDNet) algorithm to automatically extract the length of infrastructure elements from point cloud data acquired through 3D LiDAR scans of retaining walls. This methodology is expected to significantly improve time and cost efficiency compared to traditional manual measurement techniques, which are crucial for the data-driven analysis required in the precision-demanding construction sector. Additionally, the extracted positional and dimensional data can contribute to enhanced accuracy and reliability in Scan-to-BIM processes. The results of this study are anticipated to provide important insights that could accelerate the digital transformation of the construction industry. This paper provides empirical data on how the integration of digital technologies can enhance efficiency and accuracy in the construction industry, and offers directions for future research and application.

다종 공간정보로부터 취득한 지상기준점을 활용한 UAV 영상의 3차원 위치 정확도 비교 분석 (Three-Dimensional Positional Accuracy Analysis of UAV Imagery Using Ground Control Points Acquired from Multisource Geospatial Data)

  • 박소연;최윤조;배준수;홍승환;손홍규
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1013-1025
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) 플랫폼은 소규모 지역의 영상을 저비용으로 신속하게 취득이 가능하다는 장점이 있어 재난모니터링과 스마트시티 분야에 널리 활용되고 있다. UAV 기반 정사영상 및 DSM (Digital Surface Model) 제작 시 cm 급 정확도를 확보하기 위하여 UAV 영상의 위치보정을 위한 지상기준점(Ground Control Points, GCP)이 필수적이다. 하지만, 현장 GCP 취득을 위한 현장방문, 대공표지 설치에는 상당한 인력과 시간이 소요된다. 따라서 본 연구에서는 GCP 현장 취득을 대체하기 위한 방법으로 사전에 구축되어 활용가능한 세 가지 공간정보를 GCP로 이용하는 방법을 제시하였다. 연구에 사용한 세 가지 공간정보는 첫째, 25 cm 급 정사영상과 1:1000 수치지형도 기반 DEM (Digital Elevation Model), 둘째, 모바일매핑시스템(Mobile Mapping System, MMS)으로 취득한 점군 데이터, 셋째, MMS 데이터와 UAV 데이터를 융합하여 만든 하이브리드 점군 데이터이다. 세 가지 공간정보로부터 취득한 GCP를 이용하여 각각에 대하여 UAV 정사영상과 DSM (Digital Surface Model, DSM)을 생성하였다. 생성된 3가지 결과를 현장 RTK-GNSS 측량으로 취득한 검사점과 비교하여 3차원 위치 정확도평가를 진행하였다. 실험결과, 세 번째 경우인 MMS와 UAV를 융합한 하이브리드 점군 데이터를 GCP로 사용하였을 때, UAV 정사영상과 DSM의 최종 정확도가 수평방향의 RMSE는 8.9 cm, 수직방향의 RMSE는 24.5 cm로 가장 높게 나타났다. 또한, 현장 측량을 대체하기 위해 활용한 공간정보로부터 취득한 GCP의 분포는 수평 위치 정확도 보다 수직 위치 정확도에 더 많은 영향을 미치는 것으로 나타났다.