• Title/Summary/Keyword: 절연요소

Search Result 171, Processing Time 0.023 seconds

Performance Improvement of TIPS-pentacene OTFTs by blending with Polystyrene (절연고분자 polystyrene 혼합에 의한 TIPS-pentacene OTFT의 성능 개선)

  • Kim, Jae Seon;Song, Chung Kun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.96-101
    • /
    • 2013
  • In this paper we analyzed the effects of polystyrene(PS) blended in TIPS-pentacene on the performance of OTFTs. With the various molecular weight and the content of PS the performance of TIPS-pentacene OTFTs was examined and the proper molecular weight and the content were extracted for the best results. With the molecular weight of 9,580 and 0.3 wt% of PS OTFTs produced the mobility of $1.0{\pm}0.19cm^2/V{\cdot}sec$, the subthreshold slope $0.22{\pm}0.05$ V/dec, the threshold voltage $-1.19{\pm}1.21$ V, the current on/of ratio $7.12{\pm}2.09{\times}10^6$. Additionally the suitable substrate temperature for ink jet printing of the blended TIPS-pentacene OTFTs was also extracted and it was $46^{\circ}C$.

A Study on Cable Lifetime Evaluation Based on Characteristic Analysis of Insulation Resistance by Acceleration Factor of the Arrhenius Equation (아레니우스 방정식의 가속인자를 만족하는 절연저항특성 분석에 의한 케이블 수명평가 연구)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.231-236
    • /
    • 2014
  • With the development of industry these days, the demand for electric power increases and the larger capacity for power transfer is required. The scales of facilities should become larger; and the relative systems are required to operate with a higher degree of reliability. Therefore, stabilization of electric power systems is an important issue. The high degree of reliability required in the process of production and supply of electric power is an essential part of industrial society. Accident such as blackouts causes a hugh amount of economic losses to the high-tech industrial society dependent upon electric power. In this paper, in order to determine a stable operation of high-voltage power cable, used as a unique means of delivering electric power generated at a power station, we figure out the time rate of change of insulation resistance following a decay accelerating factor Arrhenius equation. With the data from the insulation resistance, we can determine the lifetime of power cable in operation.

A Voltage Drops Computation Program on Multi-Distributed Random Loads (다중 분산부하 전압강하산정 프로그램)

  • Kang, Cha-Nyeong;Kwon, Sae-Hyuk;Cho, Sung-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.64-70
    • /
    • 2007
  • A voltage drop in the electrical circuit must be unavoidable. The voltage drop in the electrical circuit means a loss of heat. The heat lost would change the characteristics of the insulator and thus, the insulating performance would be towered resulting in electric leakage, electric shock, power failure, fire and other accidents. Hence, an optimized design against the voltage drop in the electrical circuit must be an important factor determining safety and economy of electrical facilities. This study analyzed the effects of voltage drop on the electrical circuit for such low-voltage electrical facilities requiring the public safety foremost and subject to multi-distributed random loads as street lamps, buildings and subway stations, and thereupon, developed an optimized voltage drop computation program to enhance safety and economy of those electrical facilities.

Dependance of Ionic Polarity in Semiconductor Junction Interface (반도체 접합계면이 가스이온화에 따라 극성이 달라지는 원인)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.709-714
    • /
    • 2018
  • This study researched the reasons for changing polarity in accordance with junction properties in an interface of semiconductors. The contact properties of semiconductors are related to the effect of the semiconductor's device. Therefore, it is an important factor for understanding the junction characteristics in the semiconductor to increase the efficiency of devices. For generation of various junction properties, carbon-doped silicon oxide (SiOC) was deposited with various argon (Ar) gas flow rates, and the characteristics of the SiOC was varied based on the polarity in accordance with the Ar gas flows. Tin-doped zinc oxide (ZTO) as the conductor was deposited on the SiOC as an insulator to research the conductivity. The properties of the SiOC were determined from the formation of a depletion layer by the ionization reaction with various Ar gas flow rates due to the plasma energy. Schottky contact was good in the condition of the depletion layer, with a high potential barrier between the silicon (Si) wafer and the SiOC. The rate of ionization reactions increased when increasing the Ar gas flow rate, and then the potential barrier of the depletion layer was also increased owing to deficient ions from electron-hole recombination at the junction. The dielectric properties of the depletion layer changed to the properties of an insulator, which is favorable for Schottky contact. When the ZTO was deposited on the SiOC with Schottky contact, the stability of the ZTO was improved by the ionic recombination at the interface between the SiOC and the ZTO. The conductivity of ZTO/SiOC was also increased on SiOC film with ideal Schottky contact, in spite of the decreasing charge carriers. It increases the demand on the Schottky contact to improve the thin semiconductor device, and this study confirmed a high-performance device owing to Schottky contact in a low current system. Finally, the amount of current increased in the device owing to ideal Schottky contact.

Electrostatic discharge simulation of tunneling magnetoresistance devices (터널링 자기저항 소자의 정전기 방전 시뮬레이션)

  • Park, S.Y.;Choi, Y.B.;Jo, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • Electrostatic discharge characteristics were studied by connecting human body model (HBM) with tunneling magnetoresistance (TMR) device in this research. TMR samples were converted into electrical equivalent circuit with HBM and it was simulated utilizing PSPICE. Discharge characteristics were observed by changing the component values of the junction model in this equivalent circuit. The results show that resistance and capacitance of the TMR junction were determinative components that dominate the sensitivity of the electrostatic discharge(ESD). Reducing the resistance oi the junction area and lead line is more profitable to increase the recording density rather than increasing the capacitance to improve the endurance for ESD events. Endurance at DC state was performed by checking breakdown and failure voltages for applied DC voltage. HBM voltage that a TMR device could endure was estimated when the DC failure voltage was regarded as the HBM failure voltage.

A Study on the Bonding Residual Thermal Stress Analysis of Dissimilar Materials Using Boundary Element Method (경계요소법에 의한 이종재료 접합 잔류열응력의 해석)

  • Yi, Won;Yu, Yeong-Chul;Jeong, Eui-Seob;Yun, In-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.540-548
    • /
    • 1996
  • In general residual stress is measured by X-ray diffraction method but in case of bonding residual thermal stress it is inadequate technique to examine the stress singularity. Therefore Two-dimensional elastic boundary element analyses were carried out to investigate the residual thermal stress and stress singularity of bonding interface in Al/Epoxy. This boundary element results were compared with the strain gauge measurements. The effects of different interface models, sub-element and adherend thickness are presented and discussed. On the basis of the obtained results, interface delamination causing by normal stress is expected and stress singularity is observed more intensively increasing with adherend thickness. It is concluded that the bonding strength of Al/Epoxy interface can be estimated correctly by taking into account the stress singularity at the edge of the interface.

  • PDF

Fabrication and Characterization of Porous Silicon-based Urea Sensor Syst (다공질 실리콘을 이용한 요소검출용 바이오 센서 제작)

  • Jin, Joon-Hyung;Kang, Chul-Goo;Kang, Moon-Sik;Song, Min-Jung;Min, Nam-Ki;Hong, Seok-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2003-2005
    • /
    • 2002
  • 바이오 마이크로 시스템 및 바이오 MEMS 분야, 특히 실리콘을 기질로 하는 바이오 센서 제작에서 반도체 공정 기술은 센서의 대량 생산과 초소형화를 위해서 반드시 필요한 기술이다. 그러나, 감지전극의 마이크로화에 따른 센서의 감도 및 안정성 저하 문제는 해결해야 할 과제이다. 최근, 다공질 실리콘이 갖는 대면적이 실리콘 기질과 생체 고분자 (예: 단백질, 핵산 등) 간의 결합력을 향상시킬 수 있음이 알려지면서, 바이오 센서 분야에서, 새로운 형태의 드랜스듀서 재료로서의 다공질 실리콘에 대한 논의가 활발히 전개되고 있으며 또한, ISFET (Ion-Selective Field-Effect Transistors) 와는 달리 다공질 실리콘 층은 저항이 크기 때문에 센서 제작 과정에서의 부가적인 절연막을 필요로 하지 않는다. 본 연구에서는, 백금을 증착한 다공질 실리콘 표면에 전도성 고분자로서 Polypyrrole (PPy) 필름과 생체 고분자 물질로서 Urease를 각각 전기화학적으로 흡착하였다. 다공질 실리콘 층의 형성을 위해 테플론 소재의 전기화학 전지에 불산 (49%), 에탄올 (95%), $H_2O$ 혼합 용액을 넣고 실리콘 웨이퍼에 일정시간 수 mA의 산화 전류를 흘려주었으며, 약 $200{\AA}$의 티타늄 박막과 $200{\AA}$의 백금 박막을 RF 스퍼터링하여 작업 전극을 제작하였고, 백금 박막 및 Ag를 기화 증착하여 제작한 Ag/AgCl 박막을 각각 상대 전극과 기준전극으로 하였다. 박막 전극의 표면 분석을 위해 SEM (Scanning Electron Microscopy), EDX (Energy Dispersive X-ray spectroscopy) 등을 이용하였다. 제작된 요소 센서로부터 요소 농도 범위 0.01 mmol/L ${\sim}$ 100 mmol/L에서 약 0.2 mA/decade의 감도를 얻었다.

  • PDF

Packaging Substrate Bending Prediction due to Residual Stress (잔류응력으로 인한 패키지 기판 굽힘 변형량 예측)

  • Kim, Cheolgyu;Choi, Hyeseon;Kim, Minsung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • This study presents new analysis method to predict bending behavior of packaging substrate structure by comparing finite element method simulation and measured curvature using 3D scanner. Packaging substrate is easily bent and deflected while undergoing various processes such as curing of prepreg and copper pattern plating. We prepare specimens with various conditions and measure contours of each specimen and compute the residual stresses on deposited films using analytical solution to find the principle of bending. Core and prepreg in packaging substrate are made up of resin and bundles of fiber which exist orthogonally each other. Anisotropic material properties cause peculiar bending behavior of packaging substrate. We simulate the bending deflection with finite element method and verify the simulated deflection with measured data. The plating stress of electrodeposited copper is about 58 MPa. The curing stresses of solder resist and prepreg are about 13 MPa and 6.4 MPa respectively in room temperature.

Fabrication of Low Power Micro-heater for Micro-Gas Sensor I. The Thermal Distribution Analysis by The Finite Element Method (마이크로 가스센서를 위한 저전력 마이크로 히터의 제조 I. 유한요소법에 의한 열분포해석)

  • Chung, Wan-Young;Lim, Jun-Woo;Lee, Duk-Dong;Yamazoe, Noboru
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.337-345
    • /
    • 1997
  • The micro heater with PSG/$Si_{3}N_{4}$ diaphragm and platinum heater pattern was designed for micro-gas sensor fabrication. The platinum heater and the platinum electrode for sensing layer were designed on the same plane and fabricated in the single photolithography process. The thermal analyses including temperature distribution over the diaphragm and power consumption of the heater were carried by finite element method. The thermal properties of the microsensor with both heater and sensing electrode on the same plane was compared with that of the typical microsensor which had the structure of sensing layer/insulator/heater on the diaphragm.

  • PDF

Characteristics of Silicone Rubber Polymer Insulator According to Variation of Shapes (실리콘 고무 폴리머 애자의 형상의 변화에 따른 특성 연구)

  • Kang, Dong-Pil;Park, Hoy-Yul;Ahn, Myeong-Sang;Myung, In-Hae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.31-34
    • /
    • 2003
  • 폴리머 애자의 장기성능예측을 위하여 많은 수단과 측정방법이 연구되어 왔다. 그러나 폴리머 애자에 있어서 성능저하는 대부분 하우징 재료의 열화에 기인되고 있어 예측 및 진단목적의 연구가 하우징 재료의 가속열화에 초점이 맞추어져 있다. 폴리머 애자는 초고압 절연성능과 기계적 강도가 우수하여 송배전 설비에 많이 사용되고 있지만 애자의 형상과 장기성능과의 관계가 정량적으로 규명되어 있지 않아 개발하는 회사는 물론 사용하는 전력회사가 함께 어려움을 가지고 있다. 폴리머 애자의 형상이 폴리머 애자의 장기 성능에 어떻게 영향을 주는 지를 비교분석하고 평가하는 연구가 필요한 시점이다. 본 연구에서는 규칙 교대 갓, 불규칙 교대 갓의 폴리머 애자를 조립방식으로 제작하고, 규칙 교대 갓의 폴리머 애자를 일체형 진공사출 방식으로 제작을 하여 건조섬락전압, 주수섬락전압, 오손섬락전압을 측정하였다. 오손섬락전압은 주수섬락에 비하여 60% 정도 감소함을 보였고 불규칙한 교대 갓의 폴리머 애자의 경우 특성의 편차가 크게 나타났다. 폴리머 애자의 경우 소재의 우수한 특성도 중요하지만 형상적인 인자도 중요한 설계요소이므로 최적화 방안이 요구된다.

  • PDF