• Title/Summary/Keyword: 절삭유

Search Result 139, Processing Time 0.024 seconds

Optimization of Cutting Fluids for Environmentally Conscious Machining (환경친화적 기계가공을 위한 절삭유 최적화에 관한 연구)

  • Hwang, Jun;Jung, Eui-Sik;Liang, Steven Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.948-951
    • /
    • 2000
  • This paper presents the analytical and experimental methodology for the prediction of aerosol concentration and size distribution due to cutting fluid atomization mechanism in turnining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The impinging and evaporation experiments were performed to know the particle size and evaporation rate of cutting fluid. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

A Study on the Particle Embedding Phenomena on Machined Surface according to Cutting Fluid in End Milling (절삭유 필터링에 따른 엔드밀 가공면 입자 임베딩 현상에 관한 연구)

  • Kim, Jeon-Ha;Hong, Tae-Yong;Lee, Jong-Hwan;Kang, Myung-Chang;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.39-44
    • /
    • 2005
  • With the development of high speed and accuracy machining, the micro-chips are formed in the machining process and broken particles are circulated with the cutting fluid. The surface roughness and accuracy of part are deteriorated because the metal particles included in the cutting fluid are embedded on machined surface. In this study, the influences of particles for the machined surface according to filtering degrees are evaluated and the embedding mechanism is suggested.

  • PDF

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(II) (환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(II))

  • Hwnag, Joon;Chung, Eui-Sik;Hwnag, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.50-57
    • /
    • 2003
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling, Lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor Cutting fluid's aerosol via atomization process can be affected human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working tone under typical operational conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided a basis of environmental impact analysis fur environmental consciousness.

A Study on the Analysis of Cutting Fluid Aerosol in Grinding Process (연삭가공에서 절삭유 에어로졸 측정평가에 관한 연구)

  • Hwang Joon;Hwang Duk-Chul;Woo Chang-Ki;Chung Eui-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-6
    • /
    • 2005
  • Machining is a one of the broadly used manufacturing process to produce the parts, products and various molds and dies. The environmental impact due to aerosol generation via atomization process is a major concern associated with environmental consciousness. This paper presents the experimental results to analyze the characteristics of cutting fluid aerosol generation in grinding process. Experimental results show that the generated fine aerosol which particle size less than 10micron appears near worker's breath zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This quantitative analysis can be provided the basic knowledge f3r further research for environmentally conscious machining technology developments.

A Study on the Analysis of Cutting Fluid Aerosol in Grinding Process (연삭가공에서 절삭유 에어로졸 측정평가에 관한 연구)

  • Hwang Joon;Hwang Duk-Chul;Woo Chang-Ki;Chung Eui-Sik
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.282-287
    • /
    • 2005
  • This paper presents the experimental results to analyze the characteristics of cutting fluid aerosol generation in grinding process. Machining is a one of the broad manufacturing process to produce the parts, products and various molds and dies. The environmental impact due to aerosol generation via atomization process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near worker's breath zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This qualitative analysis can be provided the basic knowledge for further research for environmentally conscious machining technology developments.

  • PDF

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact in Grinding Operation (I) (환경 친화적 기계가공 기술에 관한 연구 연삭공정에서의 절삭유 미립화와 환경영향(I))

  • Hwang Joon;Chung Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.61-69
    • /
    • 2005
  • This paper presents the experimental results to analyze the atomization characteristics and environmental impact of cutting fluid in grinding process. Grinding is a major machining process to improve surface quality with different machining mechanism which is compared with turning or milling process. The environmental impact due to aerosol generation via grinding process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This study can be provided a basic knowledge fur further research of environmental consciousness machining development.

Study on Abrasive Adhesion and Polishing Effect in Wet Magnetic Abrasive Polishing (습식자기연마(WMAP)에서 입자의 구속과 가공효과에 관한 연구)

  • Son, Chul-Bae;Jin, Dong-Hyun;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.887-892
    • /
    • 2014
  • In a conventional magnetic abrasive polishing process, the polishing abrasives are mixed with ferrous particles and slight cutting oil to form a cluster of abrasives. However, when a tool rotates at a high revolution speed, most of the polishing abrasives are scattered away from it due to the increase in centrifugal force. This phenomenon directly reduces the polishing efficiency. The use of a highly viscous matter such as silicone gel instead of cutting oil for mixing is one method to solve this problem and increase abrasive adhesion. Another method to avoid high abrasive scattering is the application of wet magnetic abrasive polishing (WMAP). In WMAP, abundant mineral oil is preliminarily applied to the workpiece surface. This study experimentally evaluated the effect of WMAP on abrasive adhesion. The relationship between the amount of working abrasives and polishing conditions was characterized. Despite the lower adhesion ratio of polishing abrasives, the surface roughness was found to be significantly improved as the result of WMAP.

A Study on Surface Roughness of Aluminum 7075 to Nose Radius and Cooling Method in CNC Lathe Machining (CNC선반가공에서 노오즈 반경과 냉각방법에 따른 알루미늄7075의 표면 거칠기에 관한 연구)

  • Noh, Young-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.85-91
    • /
    • 2015
  • Current world aircraft industry studies on the precision of the product are in active progress. Particularly in terms of improving the quality of processed products in terms of the surface roughness of the dimensional accuracy, fatigue strength, and corrosion resistance, which affect a lot of research on surface roughness, has been investigated. In this study of aluminum alloy, 7075 aircraft aluminum is used in a cutting CNC lathe machine for the cutting speed and feed rate according to the cutting experiments that were conducted. Additionally, the machine tool of the cooling method soluble cutting oil, insoluble cutting oil by cooling, and cooling the workpiece by cutting surface roughness will be investigated. Through the method and soluble cutting oil coolant cooled by the cutting speed increases, the value of surface roughness showed a regular result. Tool nose radius of 0.8 mm than 0.4 mm picture of when approximately 50 of the surface roughness values were less.

A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air (건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구)

  • 강재훈;송준엽;박종권;노승국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF

Evaluation of biological treatment of cutting-oil wastes using sequencing batch reactor (SBR) process (연속 회분식 반응조 (SBR) 공정을 이용한 폐절삭유의 생물학적 처리능 평가)

  • Baek, Byung-Do;Kim, Chang-Seop;Kim, Jun-Young;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1654-1660
    • /
    • 2009
  • Two different cutting-oils from H and B companies which are sold as an eco-friendly cutting-oils were selected and the biodegradability of these commercially available cutting-oils was evaluated by the sequencing batch reactor (SBR) processes. The cutting-oil wastes ($H_1$) pre-treated by coagulation/flocculation was used as an influent to SBR. When the F/M ratio was operated 0.04 to 0.08kgCOD/kgMLSS d, removals of $BOD_5$and $COD_{Cr}$were above 97% and 91%, respectively. T-N and T-P removals were above 76% and 81%, respectively. If the diluted cutting-oil wastes ($B_1$) was used as an influent of the SBR, $COD_{Cr}$removals were above 77% at the F/M ratio of 0.01-0.02kgCOD/kgMLSS d. After the cutting-oil wastes was treated by coagulation/ flocculation ($B_2$), $COD_{Cr}$removals was above 85%. If the pre-treated cutting-oil wastes were mixed with a synthetic wastewater ($B_3$) and fed into the SBR in order to mimic the real wastewater treatment plant situation, $BOD_5$and $COD_{Cr}$removals were above 97%, 91%, respectively. T-N and T-P removals were above 79% and 76%. The ratio between $BOD_5$and $COD_{Cr}$, ($COD_{Cr}$-$BOD_5$)/$COD_{Cr}$, indicating the biodegradability of effluent of the SBR, was calculated to 85% and 61%. This means that significant amounts of non-readily-biodegradable organic compounds in the effluent of $H_1$, $B_3$are still present.