• Title/Summary/Keyword: 절삭력모델

Search Result 99, Processing Time 0.028 seconds

Model-Based Monitoring of the Turning Force (모델에 근거한 선삭력 모니터링)

  • 허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.11-15
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

Estimation of design parameters of TBM using punch penetration and Cerchar abrasiveness test (압입시험 및 세르샤 마모시험에 의한 TBM의 설계변수 추정)

  • Jeong, Ho-Young;Lee, Sudeuk;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.237-248
    • /
    • 2014
  • Linear cutting test is known to be very effective to determine machine parameters (i.e. thrust force and torque) and to estimate penetration rate of TBM and other operation conditions. Although the linear cutting test has significant advantages, the test is expensive and time-consuming because it requires large size specimen and high load capacity of the testing machine. Therefore, a few empirical prediction models (e.g. CSM, NTNU and QTBM) alternatively adopt laboratory index tests to estimate design parameters of TBM. This study discusses the estimation method of TBM machine parameters and disc cutter consumption using punch penetration test and Cerchar abrasion test of which the researches are rare. The cutter forces and cutter consumption can be estimated by the empirical models derived from the relationship between laboratory test result with field data and linear cutting test data. In addition, the estimation process was programmed through which the design parameters of TBM (e.g. thrust, torque, penetration rate, and cutter consumption) are automatically estimated using laboratory test results.

Modelling for TBM Performance Prediction (TBM 굴진성능 예측을 위한 모델링)

  • 이석원;최순욱
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.413-420
    • /
    • 2003
  • Modelling for performance prediction of mechanical excavation is discussed in this paper. Two of the most successful performance prediction models, namely theoretical based CSM model and empirical based NTH model, are discussed and compared. The basic principles of rock cutting with disc cutters, especially Constant Cross Section cutters, are discussed and a theoretical model developed is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting geometry. General modelling logic for the performance prediction of mechanical excavation is introduced. CSM computer model developed and currently used at the Earth Mechanics Institute(EMI) of the Colorado School of Mines is discussed. Example of input and output of this model is illustrated for the typical operation by Tunnel Boring Machine(TBM).

Monitoring of Tool Life through AR Model and Correlation Dimension Analysis (시계열 모델과 상관차원 해석을 통한 공구수명의 감시)

  • 김정석;이득우;강명창;최성필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.189-198
    • /
    • 1998
  • Recently, monitoring of tool life is a matter of common interesting because tool life affects precision, productivity and cost in machining process. Especially flank wear has a direct effect on cutting mechanism, so the various pattern of cutting force is obtained experimentally according to variation of wear condition. By investigating cutting force signal, AR(Autoregressive) modeling and correlation dimension analysis is conducted in turning operation. In this modeling and analysis, we extract features through 6th AR model, correlation integral and normalized correlation integral. After the back-propagation model of the neural network is utilized to monitor tool life according to flank wear. As a result. a very reliable classification of tool life was obtained.

  • PDF

Prediction the surface profile in the single point diamond turning (정밀 선삭가공에서의 표먼거칠기곡선 예측)

  • Yoon, Young-Sik;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.189-198
    • /
    • 1994
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the today's accuracy targets are dimensional tolerances in the order of 10nm and surface roughness in the order of 1nm. Such requirements cannot be satisfied by the conventional machining processes. Single point diamond turning is the one of new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting process with a diamond tool and, consequently, to develope a predicting model of a turned surface profile. In order to predict the turned surface profile, a numerical model has been developed. By means of this model, the influence of the operational settings-the material properties of the workpiece, the geometry of the cutting tool and the dynamic behaviour of the lathe-and their influences via the cutting forces upon the surface roughness have been estimated.

  • PDF

Modeling of Cutting Parameters and Optimal Process Design in Micro End-milling Processes (마이크로 엔드밀링 공정의 절삭계수 모델링 및 최적 공정설계)

  • Lee, Kwang-Jo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.261-269
    • /
    • 2009
  • Micro end-milling process is applied to fabricate precision mechanical parts cost-effectively. It is a complex and time-consuming job to select optimal process conditions with high productivity and quality. To improve the productivity and quality of precision mechanical parts, micro end-mill wear and cutting force characteristics should be studied carefully. In this paper, high speed machining experiments are studied to construct the optimum process design as well as the mathematical modeling of tool wear and cutting force related to cutting parameters in micro ball end-milling processes. Cutting force and wear characteristics under various cutting conditions are investigated through the condition monitoring system and the design of experiment. In order to construct the cutting database, mathematical models for the flank wear and cutting force gradient are derived from the response surface method. Optimal milling conditions are extracted from the developed experimental models.

  • PDF

Optimal design for face milling cutter by simulation

  • Kim, J.H.;Lee, B.C.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.76-85
    • /
    • 1993
  • Based on the cutting force model, three-dimensional optimal design model was developed and optimal designed tool which is minimized cutting force is developed by computer simulation technique. In this model the objective function which is minimized resultant cutting force was used and the variables are radial rake angle, axial rake angle, lead angle of the tool. The cutting forces using conventional and optimal tools by simulation, are compared and analyzed in time and frequency domains. In time domain the cutting force of optimal tool in feed direction was more reduced and less fluctuated than that of conventional tool. Cutting forces of optimal tool in X-and Z-directions are shown a little increased than those of conventional tool. In frequency domain amplitude of insert frequency components of optimal tool in feed direction was more reduced than that of convent- ional tool. The amplitudes of insert frequency components of optimal tool in X-and Z-direction are a little increased than those of conventional tool. As the reduction of amplitude and fluctuations of the cutting force, Optimal tool is considered that tool life and surface roughness would be improved, and stable cutting would be expected.

  • PDF

Flux Model of One-shaft Rotary Disc UF Module for the Separation of Oil Emulsion (1축 회전판형 UF 모듈의 투과모델 및 Oil Emulsion 분리 특성)

  • 김제우;노수홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.86-95
    • /
    • 1996
  • Rotary disc ultrafiltration module(RDM) was developed for the separation of oil e$$\mu$sions. This module was devised to reduce the gel polarization phenomenon by decoupling the operation pressure and the surface velocity of solution in ultrafiltration(UF) processes. The rotary disc membrane consists of 3mm-thick ABS plate covered with UF membrane (UOP, U.S.A.). When the angular velocity($\omega$) was increased, the pure water flux was slightly decreased due to pressure drop caused by centrifugal force and slip flow at the surface of membrane. The pressure drop was proportional to the square of linear velocity(${\omega}r$). When the angular velocity was changed from 52.36rad/s to 2.62rad/s, the flux decline for 5% cutting oil in one-shaft RDM at $25^{\circ}C$ and 0.1MPa was 30.16%. In the lower concentrations, angular velocity tends to give less effect on the flux. Flux(J; $kg/m^{2} \cdot s$) in a rotating disc module is mainly a function of the bulk concentration($C_{B}$; %), the linear velocity(${\omega}r$; m/s) and the effective transmembrane pressure($\Delta P_{T}$ ; Pa). Using a modified resistance-in-series model, the flux data of cutting oil experiments were fitted to give the following equation.

  • PDF

Development of a Virtual Machine Tool - Part 1 (Cutting Force Model, Machined Surface Error Model and Feed Rate Scheduling Model) (가상 공작기계의 연구 개방 - Part 1 (절삭력 모델, 가공 표면 오차 모델 및 이송 속도 스케줄링 모델))

  • Yun, Won-Su;Go, Jeong-Hun;Jo, Dong-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.74-79
    • /
    • 2001
  • In this two-part paper, a virtual machine tool (VMT) is presented. In part 1, the analytical foundation of a virtual machining system, envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes, is developed. The VMT system purposes to experience the pseudo-real machining before real cutting with a CNC machine tool, to provide the proper cutting conditions for process planners, and to compensate or control the machining process in terms of the productivity and attributes of products. The attributes can be characterized with the machined surface error, dimensional accuracy, roughness, integrity and so forth. The main components of the VMT are cutting process, application, thermal behavior and feed drive modules. In part 1, the cutting process module is presented. The proposed models were verified experimentally and gave significantly better prediction results than any other method. The thermal behavior and feed drive modules are developed in part 2 paper. The developed models are integrated as a comprehensive software environment in part 2 paper.

  • PDF

A Study on the Instantaneous Shear Plane Based Cutting Force Model for End Milling (밀링 작업에서 순간 전단면에 기초한 절삭력 모델에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.225-260
    • /
    • 2002
  • The purpose of this paper is to further extend the theoretical understanding of the dynamic end milling process and to derive a computational model to predict the milling force components. A comparative assessment of different cutting force models is performed to demonstrate that the instantaneous shear plane based formulation is physically sound and offers the best agreement with experimental results. The procedure for the calculation of the model parameters used in the cutting force model, based on experimental data, has been presented. The validity of the proposed computational model has been experimentally verified through a series of cutting tests.

  • PDF