• Title/Summary/Keyword: 절삭깊이

Search Result 97, Processing Time 0.028 seconds

Application of Rotary Cutting Test for Performance Assessment of Tunnel Boring Extender (TBE의 굴착성능 평가를 위한 회전식 절삭시험의 적용)

  • Jeong, Hoyoung;Jeon, Seokwon;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.32 no.4
    • /
    • pp.243-253
    • /
    • 2022
  • In this study, the cutting efficiency of TBE (Tunnel Boring Extender) was evaluated by using rotary cutting tester. In the rotary cutting test, a specimen which has a drilled hollow hole at the center was made of rock-like material. The specimen was cut by UDC (undercutting disc cutter) with spiral cutting path to simulate the cutting process of TBE. The cutting forces and specific energy were evaluated under different cutting conditions. The results indicated that the cutter forces of UDC linearly increased with the vertical and radial penetration depths. Among the three directional cutter forces, the normal force is larger than other force components. While the specific energy decreased with the two penetration depths, in particular, it was presumed that the specific energy was minimized at a certain value of the ratio of radial to vertical penetration depth.

Monitoring Machining Conditions by Analyzing Cutting-Force Vibration (절삭력 진동 분석에 의한 가공조건 모니터링)

  • Piao, Chunguang;Kim, Ju Wan;Kim, Jin Oh;Shin, Yoan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.839-849
    • /
    • 2015
  • This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.

A Study on the Prediction of the Limiting Depth of Cut in Dynamic Cuting of a Tapered Workpiece (테이퍼진 가공물의 동적 한계절삭깊이의 예측에 관한 연구)

  • Ssengonzi, J. B.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.271-281
    • /
    • 1982
  • 이 연구는 테이퍼진 가공물이 동적 절삭상태에서 가지는 한계절삭깊이의 예측을 위한 이론 및 실험적 방법을 논하였다. 절삭 모델은 Usui-Hirota(1)가 제안한 것을, 가공물의 형상은 MTIRA (2)가 제안한 공작기계 동적성능시험용 표준시편을 다소 수정하여 사용하였다. 칩유동각은 Usui-Hirota의 에너지 방법에 의하여 구하였고, Inamura-Sata(6)의 원통형 가공물에 대한 절 삭동력학 이론을 일반화시켜 테이퍼진 가공물에 적용하여 절삭의 안정한계를 구한 후 채터시험 결과와 비교하여 이론의 타당성을 검증하였다.

Optimization of the constrained machining parameters problem by the SUMT (SUMT를 이용한 구속절삭조건의 문제에 관한 최적화)

  • 최경현;조규갑
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.70-76
    • /
    • 1995
  • 생산스케쥴링의 기준이 되는 정보는 각 부품의 생산시간이나 생산비용인데, 이들은 고정된 값으로 취급되는 경우가 많다. 그러나, 실제적으로는 가공조건에 의하여 그 값들이 변화한다. 가공조거는 절삭깊이(depth of cut), 이송속도(feed rate), 및 절삭속도(cutting speed)로 구성되어 있다. 본 연구에서는 주어진 조건에 있어서 가공의 최적절삭조건을 최적이론의 하나인 페널티 함수이론(SUMT)을 이용하여 결정하는 할고리즘을 개발하였다. 알고리즘에서 목표함수(objective functions)로는 표면거칠기, 파워 소비, 등을 고려했다. 개발된 알고리즘 프로그램의 유용성을 증명하기 위해 선반가공의 예를 실행하여 그 결과를 예시하였다.

  • PDF

Study on a Wire Saw Rock Cutting Model for Tunnel Excavation and Cutting Performance Improvement (터널굴착용 와이어쏘 암반절삭 모델 구축 및 절삭성능 향상 연구)

  • Lee, Jin-Ho;Ahn, Sung-Kwon;Lee, Kyoung-Chan;Bang, Choon-Seok;Sagong, Myung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1069-1077
    • /
    • 2015
  • In tunnel excavation using blast, the wire saw rock cutting method generates a discontinuity perimeter around the center cut, and thus prevents blast vibration propagation to reduce vibration and noise. Therefore, the method is expected to be easy to use and economical compared with other methods. In this paper, the cutting mechanism of wire saw in tunnel excavation is investigated. A model describing the changes in cutting depth and wire saw shape inside a rock during cutting is established and validated for this purpose. Through a simulation using the model, the important characteristics of wire saw cut are investigated, and the influences of cutting conditions, such as wire saw tension, wire saw speed, feed speed, depth, and diameter of boring, on cutting performance are also examined. A method to improve the cutting performance is proposed based on the results.

A study on machine tool structural dynamics by digital correlation method (디지탈 상관법에 의한 공작기계 구조동력학에 대한 연구)

  • Lee, Jang Moo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.2
    • /
    • pp.139-150
    • /
    • 1981
  • 미니컴퓨터와 디짓틸 상관법을 이용하녀 이상적인 아나로그 씨스템의 주파수 응답을 구하고 그 결과를 이론치와 비교하여 디짓탈 데이타 처리방법의 타당성을 검증하였다. 또한 이 방법을 실제로 복잡한 절삭중의 공작기계의 주파수응답 ㅕㄹ정에 적용하여 이때 야기되는 문제점을 검토하고 그 해결방안을 제시하였다. 또한 제 절삭 조건하에서 얻어진 주파수응답 함수로부터 공작기계의 아버 및 시편의 길이, 절삭 속도, 절삭깊이, 피이드율에 따른 공작기계 구조동력학의 변화를 규명하였다.

Cutting Process Monitoring Using Tool Dynamometer in End-Milling Process (엔드밀 공정에서 공구 동력계를 이용한 절삭상태 감시)

  • 김홍겸;양호석;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.14-18
    • /
    • 2001
  • Rise in cutting force causes tool damage and worsens product quality resulting in machining accuracy deterioration. Especially, fragile material cutting brings about breakage of material and worsens product surface quality. In this study, we trace the locus of cutting force and examine the machined surface corresponding to the cutting force loci. and build up a monitoring system for deciding normal operation or not of cutting process.

  • PDF

A Study on the Calibration of Z-axis Depth of Cut using AE Signal in Micro-machining (마이크로 가공에서 AE 신호를 이용한 z 축 절삭깊이 보정에 관한 연구)

  • Kang I.S.;Kim J.H.;Kang M.C.;Lee K.Y.;Kim J.S.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.410-413
    • /
    • 2005
  • There are technical requirements to manufacture large size functional parts with not only simple geometries like a flat or spherical surface but also sculptured geometries. In addition, the required machining accuracy for these parts is becoming more severe day-by-day. In general, the forms of machined parts are determined by relative position between the workpiece and the tool during cutting. To improve machining accuracy, the relative position error should be maintained within the required accuracy. This study deals with estimation and calibration of depth of cut using AE signal in micro-machining.

  • PDF

Application of AE Sensor for Calibration of Depth of Cut in Micro-machining (마이크로 가공에서 절삭깊이 보정을 위한 AE 센서의 적용)

  • Kang, Ik-Soo;Kim, Jeong-Suk;Kim, Jeon-Ha
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.53-57
    • /
    • 2009
  • There are technical requirements to manufacture large size functional parts with not only simple geometries like a flat or spherical surface but also sculptured geometries. In addition, the required machining accuracy for these parts is becoming more severe. In general, the form accuracy of machined parts is determined by the relative position between workpiece and tool during machining process. To improve machining accuracy the relative position errors should be maintained within the required accuracy. This study deals with the estimation and calibration of depth of cut using the AE signal in micro-machining. Also, this sensing technique can be applied to detect the initial contact between workpiece and tool.

The Minimizing of Cutting Depth using Vibration Cutting (진동절삭법을 이용한 절삭깊이의 최소화)

  • 손성민;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.38-45
    • /
    • 2004
  • This paper discusses the minimum cutting thickness with a continuous chip in sub-micrometer order precision diamond cutting. An ultra precision cutting model is proposed, in which the tool edge radius and the friction coefficient are the principal factors determining the minimum cutting thickness. The experimental results verify the proposed model and provide various supporting evidence. In order to reduce the minimum cutting thickness a vibration cutting method is applied, and the effects are investigated through a series of experiments under the same conditions as conventional cutting method.