• Title/Summary/Keyword: 절리방위

Search Result 2, Processing Time 0.014 seconds

Some Considerations on the Distinct Element Modelling for the Stability Analysis of a Tunnel in a Jointed Rock Mass (절리암반내 터널의 안정성 평가를 위한 개별요소 모델링에 대한 고찰)

  • Chang, Seok-Bue;Huh, Do-Hak
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.3-12
    • /
    • 2001
  • This paper presents the proposed methods of DE (distinct element) modelling to estimate the stability of tunnels in jointed rock masses. First, the criterion to select the joint set(s) contributed to the discontinuous behaviour in a tunnel section is proposed. Selected joint set(s) is(are) considered to form the edges of distinct elements (rock blocks) and the others to modify the elastic properties of rock blocks. The complex DE model with the average and the deviation of joint orientation and joint length for each joint set was compared to the simple model with only the average of joint orientation and the assumption that joint length is infinite. As a result, the latter is suitable to the purpose of tunnel design because it can show the consistent behaviour of a jointed rock mass such as the locally discontinuous failure and the global anisotropic behaviour.

  • PDF

A Study on the Rock Pressure Wedge Failure During Ground Excavation (대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구)

  • 이승호
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The geological characteristics of Korea are that we can encounter the rock layer only after 10m of excavation, methods to presume the rock pressure distribution of the rock layer is urgently needed. When using the existing empiric science of Terzaghi-Peck, Tschebotarioff to measure the rock pressure of the rock layer, underestimate the real strength because of the cohesion is ignored. Therefore calculating the horizontal sliding force of wedge block, which includes the dips and shear strength of discontinuities and surcharge load etc., think to be to getting a closer rock stress of the real rock pressure acting upon the earth structure in rock mass. This research use Coulomb soil pressure theory assuming that the backfill soil will yield wedge failure when it has cohesion, applying Prakash-Saran(l963), and then it uses equilibrium of force and shear strength $\tau$=c+$\sigma$tan $\Phi$ of the cliscontinuities. Analyzing shear strength and dips of cliscontinuities using calculated theory according to the status of discontinuities aperture, we were able to find out that because the cohesion and friction angle of the rock layer itself is large enough, how the dip directions and dips facing the excavation face is the only factor deciding whether or not the rock stress is applied. The evaluated theory of this research should be strictly estimated, so that the many parameters such as c, $\Phi$value, types and structures of rock class, excessive lateral pressure, dynamic load, earthquake, needed later when calculating shear strength of discontinuities and especially the ground water effect acting on rock layer should be coumpted with many measuring data achieve at the insite to study the application.

  • PDF