• Title/Summary/Keyword: 절리밀도

Search Result 24, Processing Time 0.02 seconds

Parameter Effect on Elastic Modulus of Discontinuity Rock-mass Based on Homogenization Method (균질화 이론에 근거한 불연속성 암반의 탄성계수에 영향을 미치는 불연속면의 조사 인자에 관한 연구)

  • Baek, Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.63-70
    • /
    • 2000
  • The quantitative analyses and the mechanical interpretation of discontinuity planes are the most important factor for the study of strength and deformation properties of rock masses containing discontinuity planes. However, the relationship between the factors investigated in the field and the actual mechanical properties of discontinuity planes is not fully understood. The main purpose of this study is to investigate the effects of density, length, and spacing of joints on elastic modulus of rock masses as these values vary. A new parameter which has a direct relation with the elastic modulus of discontinuity planes is also preposed in this study. The combination of finite element methods and homogenization methods has been used for the numerical analyses of a uintcell with discontinuity planes, which is generated using random-number generation methods. The elastic modulus of the discontinuity plane is found from the numerical analyses. The final results propose not only the relation between the investigation parameters of discontinuity planes and the elastic modulus of rock masses but also a new parameter, an effect area ratio having a linear relation with the elastic modulus of rock masses.

  • PDF

The Geometric Characteristics of Landslides and Joint Characteristics in Gangneung Area (강릉지역 산사태의 기하학적 특성과 절리특성에 관한 연구)

  • Cho, Yong-Chan;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.437-453
    • /
    • 2006
  • More than 3,000 landslides were occurred by torrential rains in Gangneung area due to the typhoon Rusa in 2002. In order to analyze the landslide origin and its geometric characteristics, 1,365 landslide data were collected from the field survey of Sacheon, Jumunjin, and Yeongok areas in which the intensive landslides took place. The average landslide size in the study area was composed of 10m width, 30m length, and $21^{\circ}{\sim}35^{\circ}$ slope angle, and the plane view of landslides A-type (i.e. wide shape of lower part) that contains approximately 50.5% of the landslides commonly occurred. In particular the area of Sacheon heavily damaged by mountain fires had more occurrence of landslides than other areas. The landslides of uniform tendency of slope direction were examined resulted from the contribution of topographic characteristics due to the weathering and wind direction during heavy rainfalls. In order to analyze the direction of joint, 249 orientation data were collected from the study area. The window method was employed to determine the characteristics of joint density in 51 locations of the study area. The results showed that many landslides occurred in the areas of joint density with the range of $0.05{\sim}0.1$.

Fracture Characteristics and Segmentation of Yangsan Fault around Mt. Namsan, Gyeongju City, Korea (경주 남산 일대의 단열구조 특성과 양산단층의 분절)

  • Kim, Heon-Joo;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.51-61
    • /
    • 2009
  • Fractures and segmentation in association with the activities of the Yangsan fault are studied around Mt. Namsan, Gyengju city in the southeastern part of Korea. It is believed that the higher values of joint density and fractal dimension with the approach of the center of the Yangsan fault mean intense fracturing due to the fault activity. The boundary between fault damage zone and host rock is inferred to be placed at about 2.7 km from the center of the Yangsan fault where the values of joint density and fractal dimension abruptly decrease and the orientations of joint are also much dispersed. The small faults within the damage zone of the Yangsan fault are definitely divided into right-lateral and left-lateral strike-slip faults. The former is considered to be formed during the right-lateral movement of the Yangsan fault and the latter during the left-lateral movement. The Yangsan fault is segmented in the study area with obvious evidences as follows: (1) the difference of fault strike between northern and southern segments, (2) The geometry of contractional imbricate fans and syncline plunging $9^{\circ}$, $S85^{\circ}E$ at the end of northern segment, and (3) anticline plunging $28^{\circ}$, $N4^{\circ}W$ at the end of southern segment.

Topographical Landscapes and their Controlling Geological Factors in the Cheongryangsan Provincial Park: Lithologic Difference and Faults (청량산 도립공원의 지형경관과 지질학적 지배 요인: 암질차이와 단층)

  • Hwang, Sang Koo;Son, Young Woo;Son, Jin Dam
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.167-181
    • /
    • 2017
  • Cheongryangsan area ($49.51km^2$) has been designated as the Provincial Park in 1982, because it has magnificent aspect and seasonally spectacular landscapes. Especially, Cheongryangsa sitey ($4.09km^2$) has been designated as Noted Scenery No. 23 in 2007, because it has the same topographical landscape as rock cliffs, rock peaks and caves. The most spectacular landscapes are exhibited in the Cheongryangsan Conglomerate and Osipbong Basalt. There are twelve rock peaks on the ridges of the two strata, and many rock cliffs in the several valleys of strata, in which a few caves are formed by differential weathering and erosion. The valleys, in which flow Cheongryang, Bukgok and Cheonae streams, are classified as fault valleys along WNW-ESE faults. The rock cliffs were generated from vertical joints parallel to WNW-ESE faults in the two strata, and the caves were formed by differential weathering and erosion along bedding of sandstones and shales intercalated in the conglomerates. The rock peaks are landscapes formed by differential erosion along crossed vertical joints in the ridges. The vertical joints are developed subparallel to two WNW-ESE faults and a NNE-WWS fault. Therefore the topographical features are caused by existence of the faults and Lithologic difference in the Cheongryangsan Conglomerate and Osipbong Basalt, and by differential weathering and erosion along them.

3D imaging of fracture aperture density distribution for the design and assessment of grouting works (절리 암반내 그라우팅 설계 및 성과 판단을 위한 절리틈새 밀도 분포의 3차원 영상화 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Nam, Ji-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.113-120
    • /
    • 2004
  • Grouting works in fractured rocks have been performed to reinforce the underground and/or to block ground water flow at the foundation site of dam, bridge and so on. For the efficient grouting design, a prior knowledge of the fracture pattern of underground area to be grouted in very important. For the practical use, aperture sizes of open fractures that will be filled up with grouting materials will be kind of valuable information. Thus, the main purpose of this study is to develop a new technique (so called "GenFT") enable to form a three dimensional image of fracture aperture density distribution from Televiewer data. For this, the study is to focus on dealing with (1) estimating aperture size of each fracture automatically from Televiewer time image, (2) mapping extension of fracture planes on a given section, (3) evaluating aperture density distribution on the section by using both aperture size and fracture face mapping result of each fracture, (4) developing an algorithm that can transfer the previous results to any arbitrary(vertical and/or horizontal) section around the borehole. Since 3D imaging means "a strategy used to form an image of arbitrarily subdivided 2D sections with aperture density distribution", it will help avoid ambiguities of fracture pattern interpretation and hence will be of practical use not only for the design and assessment of grouting works but also for various engineering works. Examples of fields experiments are illustrated. It would seem that this technique might lead to reflecting future trend in underground survey.

  • PDF

Determination of Equivalent Hydraulic Conductivity of Rock Mass Using Three-Dimensional Discontinuity Network (삼차원 불연속면 연결망을 이용한 암반의 등가수리전도도 결정에 대한 연구)

  • 방상혁;전석원;최종근
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.52-63
    • /
    • 2003
  • Discontinuities such as faults, fractures and joints in rock mass play the dominant role in the mechanical and hydraulic properties of the rock mass. The key factors that influence on the flow of groundwater are hydraulic and geometric characteristics of discontinuities and their connectivity. In this study, a program that analyzes groundwater flow in the 3D discontinuity network was developed on the assumption that the discontinuity characteristics such as density, trace length, orientation and aperture have particular distribution functions. This program generates discontinuities in a three-dimensional space and analyzes their connectivity and groundwater flow. Due to the limited computing capacity In this study, REV was not exactly determined, but it was inferred to be greater than 25$\times$25$\times$25 ㎥. By calculating the extent of aperture that influences on the groundwater flow, it was found that the discontinuities with the aperture smaller than 30% of the mean aperture had little influence on the groundwater flow. In addition, there was little difference in the equivalent hydraulic conductivity for the the two cases when considering and not considering the boundary effect. It was because the groundwater flow was mostly influenced by the discontinuities with large aperture. Among the parameters considered in this study, the length, aperture, and orientation of discontinuities had the greatest influence on the equivalent hydraulic conductivity of rock mass in their order. In case of existence of a fault in rock mass, elements of the equivalent hydraulic conductivity tensor parallel to the fault fairly increased in their magnitude but those perpendicular to the fault were increased in a very small amount at the first stage and then converged.

A Study on Stability Analysis of Large Underground Limestone Openings considering Excavation Damaged Zone (굴착손상영역을 고려한 대형 석회석 갱내채광장의 안정성 분석 연구)

  • Kwon, Min-Hyuk;Choi, Sung-Oong;Kim, Chang-Oh
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.131-142
    • /
    • 2016
  • Investigation for rock joints, inspection for rock core, and laboratory tests for rock specimens, in this study, have been performed for identification of the extent and properties of Excavation Damaged Zone in a underground limestone mine, which plans to enlarge the size of openings to improve the production rate. Properties of EDZ and surrounding rock masses have been used numerically for discontinuum analysis, and it is concluded that the effect of EDZ can be increased with increasing the opening size and a blasting pattern of high precision can be suggested for the counterplan.

Analysis of In-situ Rock Conditions for Fragmentation Prediction in Bench Blasting (벤치발파에서 파쇄도 예측을 위한 암반조건 분석)

  • 최용근;이정인;이정상;김장순
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.353-362
    • /
    • 2004
  • Prediction of fragmentation in bench blasting is one of the most important factors to establish the production plan. It is widely accepted that fragmentation could be accurately predicted using the Kuz-Ram model in bench blasting. Nevertheless, the model has an ambiguous or subjective aspect in evaluating the model parameters such as joint condition, rock strength, density, burden, explosive strength and spacing. This study proposes a new method to evaluate the parameters of Kuz-Ram model, and the predicted mean fragment sizes using the proposed method are examined by comparing the measured sizes in the field. The results show that the predictions using Kuz-Ram model with the proposed method coincide with field measurements, but Kuz-Ram model does not reflect the in-situ rock condition and hence needs to be improved.

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

A study on basin structures in Yanggu and Hwacheon and their application to Geotoursim purposes (강원도 양구, 화천 일원의 분지 지형과 지오투어리즘 활용방안에 관한 연구)

  • PARK, Kyeong;KIM, Chang Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.97-108
    • /
    • 2012
  • There exist plenty of geomorphological resources in Haean Basin, Yonghwasan Mt., and Gandong Basin in Eastern DMZ area in Gangwon Province which can be used as geotourism resources. Meticulous strategies are necessary to improve the geotourism bases in such a mountainous region. Potential geosites including Yongneup and Simjeog wetlands are nearby, so it is necessary to include these geosites when planning geotourism courses. The values of these sites coinciding with the goal of geopark are as follows: this region shows contrasting landforms derived from distinctive rocks such as gneiss and biotite granite, and there are many landforms derived from differential weathering of granite too. They can be used to explain the developmental history of numerous basin structures in entire Korean peninsula.