• Title/Summary/Keyword: 절리면거칠기

Search Result 2, Processing Time 0.015 seconds

Analysis of Random Properties for JRC using Terrestrial LiDAR (지상라이다를 이용한 암반사면 불연속면거칠기에 대한 확률특성 분석)

  • Park, Sung-Wook;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • Joint roughness is one of the most important parameters in analysis of rock slope stability. Especially in probabilistic analysis, the random properties of joint roughness influence the probability of slope failure. Therefore, a large dataset on joint roughness is required for the probabilistic analysis but the traditional direct measurement of roughness in the field has some limitations. Terrestrial LiDAR has advantagess over traditional direct measurement in terms of cost and time. JRC (Joint Roughness Coefficient) was calculated from statistical parameters which are known from quantitative methods of converting the roughness of the material surface into JRC. The mean, standard deviation and distribution function of JRC were obtained, and we found that LiDAR is useful in obtaining large dataset for random variables.

A Numerical Study for Stability of Tunnel in Jointed Rock Using Barton-Bandis Model (BB절리모델을 활용한 절리암반속 터널안정성의 수치해석적 연구)

  • Lee, Sung-Ki;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.3
    • /
    • pp.15-29
    • /
    • 2001
  • For the pertinent use of NMT method, both characteristics of joints (JRC, JCS and ${\phi}_r$) and characteristics of rock mass (Q-Value) must be investigated carefully. The main objective of the study presented is to investigate how sensitive the predicted behaviour of an underground excavation is to various realistic assumptions about some input parameter for the jointed rock mass. Joint pattern in the tunnel is predicted by statistical approach (chi-square test). In this paper, sensitivity studies involving in joint characteristics were carried out. The parametric studies involving change in Barton-Bandis joint model have shown that JCS is relatively insensitive to JRC and ${\phi}_r$. An increase in JRC value may not, according to the Barton-Bandis model, necessarily lead to a decrease in displacement. The importance of dilation in predicting the behaviour of a rock mass around an excavation is emphasized from a comparison of the Barton-Bandis joint behaviour model with the Mohr-Coulomb model. The Barton-Bandis model predicted higher stress, which allow for the build-up of stress caused by dilatant behaviour.

  • PDF