• Title/Summary/Keyword: 절리경사각

Search Result 47, Processing Time 0.026 seconds

A Study of Joint System for Groundwater Pathway (지하수 유로 조사를 위한 절리계의 응용지질학적 분석)

  • 최병렬
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.131-143
    • /
    • 1998
  • The study area, Beulgok-myon Nonsan-goon Chungcheongnan-do is consist of Changri slate(Och, okcheon system), lithic tuff(Kslt, kyoungsang system), granite (Kqb, kyoungsang system) and quartz porphyry(Kgf, kyoungsang system). More than 3000 joints were measured and classified by direction. Main dipdirection/dips of Kqb are 228~257/73~88, 010~150/70~85, Och are 134~164/40~90, 214~249/55~89, Kslt are 291~332/75~82, 235~241/73~71. But Kgf are not appeared distinct directions of joint. In field, p-wave velocities(Vp) are measured on the bed rock. Vp of Kgf are $5000m(240^{\circ})~2380(360^{\circ})m/s$, Kqb are $3846(210^{\circ})~1408(150^{\circ})m/s$, Kslt are $5000(360^{\circ})~2323(150^{\circ})m/s$ and Och are $6657(180^{\circ})~2000(030^{\circ})m/s$. Also P-wave velocities on specimen are measured. It is slightely higher than it's measured on the bed rock. For engineering properties of rock, we measured Poisson's ratio, rigidity, Young's modulus and bulk modulus by dynamic method.

  • PDF

Effect of Rock Discontinuities on Dynamic Shear Stress Wave (암반 불연속면이 동적 전단응력파에 미치는 영향)

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.25-32
    • /
    • 2018
  • This paper investigates the effect of rock discontinuities on a shear stress wave that is induced by earthquake or blasting and provides the result of numerical parametric studies. The numerical tests of different conditions of rock and discontinuity have been carried out after confirming that the numerical approach is valid throughout a verification analysis from which the test results were compared with a theoretical solution. In-situ stress condition was considered as a rock condition and internal friction angle and cohesive value, which are the shear strength parameters, were considered as discontinuities condition. The joint inclination angle was also taken into account as a parameter. With the various conditions of different parameters, the test results showed that a shear stress wave propagating through a mass is highly influenced by the shear strength of discontinuities and the condition of joint inclination angle as well as in-situ stress. The study results indicate that when earthquake or blasting-induced dynamic loading propagates through a jointed rock mass or a stratified soil ground the effect of in-situ stress and discontinuities including a stratum boundary should be taken into account when evaluating the dynamic effect on nearby facilities and structures.

Effects of Geological Structures on Slope Stability : An Example from the Northwestern Part of Daegu, Korea (퇴적암 내의 지질구조가 비탈면 안정성에 미치는 영향 : 대구 북서부 지역의 예)

  • Ko, Kyoung-Tae;Choi, Jin-Hyuck;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • The purpose of this work is to gain a better understanding of the interrelationships between geological structures and slope failure in sedimentary rocks. In the studied slopes, construction-related slope failure could only be observed on the south-dipping slopes. This indicates that slope stability may be dependent on the angular relationships between the dip direction of bedding and the orientation of the slope. Slope failure continued, post-construction, around large fault zones in the studied outcrop; these fault damage zones are, however, not easily recognized in the field. Here we suggest a new method that uses accumulated fracture density to precisely identify fault damage zones. Multiple-faced slopes are now increasingly being exposed during large-scale construction projects in South Korea. This multiple-faced slope analysis indicates that the stability of a slope should be evaluated by identifying domains, through the analysis of possible slopes and their angular relationships with bedding and other discontinuities, prior to construction. Therefore, careful consideration of geological structures such as bedding and other discontinuities, and their angular relationships during the design of cuttings through sedimentary rocks, will increase the efficiency of construction and enable the safe construction of more stable slopes that will retain their stability after construction.

Weighted Analysis Method for Estimating the Orientation of Limestone Caves in Korea (가중치를 이용한 국내 석회동굴 발달 방향성 해석법 개발에 관한 연구)

  • Lee, Sang-Kyun;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.39-52
    • /
    • 2014
  • Limestone caves that consist of main passages and branches are formed by a variety of processes, and have the characteristic of developing with a preferred orientation controlled by discontinuities such as bedding, joints, and faults around the cave. However, it is difficult to analyze a representative orientation from various orientations. To interpret the overall development orientation of limestone caves, this study proposes new development orientation analysis methods, termed the Average Span Ratio Method (ASRM) and the Individual Development Ratio Method (IDRM), using the weighting of persistence. Nine limestone caves in Korea were randomly selected for testing the new methods. The methods show a stronger development orientation for limestone caves than that obtained by traditional methods, which consider only the distribution of development orientations. Based on an analysis of the relationship between the average span and the dip angle of bedding, it is confirmed that shallowly dipping bedding is a major contributor to the expansion of span in limestone caves. In addition, using scan-line survey data acquired in the field, we perform an RMR analysis of stability of the ground around limestone caves.

Ground Subsidence Caused by the Development of Underground Karstic Networks in Limestone Terrain, Taebag City Korea (석회암 분포지에서 터널시공에 따른 지표침하 원인 분석)

  • Lee, Byung-Joo;Park, SungWook;Kim, Dea-Hong;Song, Young-Karb
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • The aim of this study is the safety and an accident prevention in limestone terrain by the underground tunneling. The geology of the study area consists of a Paleozoic sedimentary sequence dominated by limestone, sandstone, shale, and carbonaceous shale. The sequence gently dips to the northeast but the joint contains steep with variable trend. A significant fracture zone is developed in the limestone and shale beds, sub-parallel to bedding, and follows in part the limestone-sandstone contact. Monitoring of groundwater levels in the area shows marked fluctuations in the water table, which repeatedly rose to a level of -4 m before sinking to -15 m. These cycles occurred in mid-May, 2007 and in early and middle June. The data indicate that these fluctuations were unrelated to rainfall that occurred during the study period. We infer that the fluctuations were associated with the development of underground karstic networks along the deep fracture zone, and overlying ground subsidence is likely related to the rapid sinking of groundwater and the associated strong downward suction force.

Accuracy Evaluation of Non-prism Total Station for Topographic Surveying (지형측량을 위한 무 프리즘 토털스테이션 정확도 평가)

  • Seo, Dong-Ju
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.433-441
    • /
    • 2006
  • With a development of electrical technology in recent, it is possible to measure distance without direct contact to object using laser which launched at instrument and reflect from object. Furthermore, the advent of non prism total station brought the increment of application in many fields including not only road, airport, and harbors but also measurement and monitoring of structural displacement in construction fields. In this study, therefore, to evaluate accuracy of non prism total station, accuracy was analyzed by measuring certain distance which classified by both certain materials and angle of reflection. By this method, the derived values were applied to topographical survey for the efficient applicability. According to a study, result value of non prism total station was satisfBctory regardless of material when the angle of reflection was 90 degrees. RMSE increased when the angle of reflection are gradually increased to acute angle. In result of regression analysis using certain distance which classified by both materials and angles of reflection, there is relationship between distance and angle of reflection, but material has no relevance to the result value. When carrying out general topographical survey, proper application of non prism total station will go far conducting safe and prompt survey at the dangerous site such a road which have lots of traffic flow and rock joint which have high angles of inclination.

Slope Failure Along the Weathered And Mobilized Foliation Plane : Studies for Causes of the Failure and the Supporting Methodologies (풍화된 엽리면을 따라 붕괴된 대절토 사면의 붕괴요인 분석과 보강방안에 대한 연구)

  • Hwang, Sang-Gi;Kim, Young-Muk;Ji, In-Taeg;Jeon, Byoung-Choo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.775-784
    • /
    • 2009
  • Weathered foliation could act as a critical failure plane because this type of plane tend to have low roughness and long extensions. A big constructed slope at $\bigcirc\bigcirc$ road construction site was failed due to the block movement along a fault zone which is parallel to foliation. Tectonic activity reactivated a fault zone parallel to foliation, and the fault clay within the shear zone metamorphosed retrogressively to chrolite. The failed block moved when the block weigh lost the balancing with the resisting force of the retrogressively metamorphosed chrolite. Evaluating the three dimensional distribution of the foliation was critical for establishing a plan for the stabilization of the slope. For this purpose, 10 boreholes were drilled as a lattice distribution, and the BIPS analyses are performed at each boreholes. The fractures measured in the boreholes are projected into 15 cross sections and their distributions are analysed, using Fracjection software. The projection analyse show that the strike of the foliation gets dipper towards left side of the slope. This geometry indicates that there are more failure block geometry at left side of the slope. Potential failure planes are searched using the projection method, and these information are provided for further support design.

  • PDF