• Title/Summary/Keyword: 절리간극

Search Result 35, Processing Time 0.029 seconds

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

Influence of Design Parameters of Grout Injection in Rock Mass using Numerical Analysis (암반 그라우팅 주입 설계변수가 주입성능에 미치는 영향의 수치해석적 평가)

  • Lee, Jong Won;Kim, Hyung Mok;Yazdani, Mahmoud;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.324-332
    • /
    • 2017
  • In this paper, a numerical analysis of one-dimensional viscous fluid flow in a rock joint using UDEC code is performed to evaluate the effect of design parameters on injection performance. We consider injection pressure, fluid compressibility, time dependence of yield strength and viscosity of injected grout fluid, and mechanical deformation of joint as the design parameters, and penetration length and flow rate of injection are investigated as the injection performance. Numerical estimations of penetration length and flow rate were compared to analytical solution and were well comparable with each other. We showed that cumulative injection volume can be over-estimated by 1.2 times than the case that the time-dependent viscosity evolution is not considered. We also carried out a coupled fluid flow and mechanical deformation analysis and demonstrated that injection-induced joint opening may result in the increment of cumulative volume by 4.4 times of that from the flow only analysis in which joint aperture is kept constant.

Evaluation of High-Viscosity Grouting Injection Perfomance for Reinforcement of Rock Joint in Deep -Depth Tunnels (대심도 터널 암반 절리 보강을 위한 고점도 그라우팅 주입 성능 평가)

  • Inkook Yoon;Junho Moon;Younguk Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.15-19
    • /
    • 2024
  • This study aimed to develop high-efficiency grouting techniques under deep-depth conditions by experimentally verifying the applicability of various injection materials. Particle size analysis and injection model experiments were conducted with Ordinary Portland Cement (OPC) and Micro Cement (MC) to evaluate the injection performance of each material. Using Barton's Cubic Network theory, the rock fracture spacing was calculated for domestic deep-depth standards, specifically below 40 meters underground. The analysis of particle size passability under selected conditions showed that MC could pass through the rock fracture gaps, while OPC could not. According to the results of the injection model experiments using experimental devices and area calculation software, OPC failed in injection due to its larger particle size, whereas MC was capable of injection even under high-viscosity conditions. Based on these findings, the study quantitatively and visually derived the applicability of grouting materials under deep-depth conditions, and high-viscosity MC material is expected to be effective for waterproofing enhancement in deep-depth rock fracture surfaces.

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.

An Evaluation of Empirical Prediction Equation for Deformation Modulus of Rock Masses by Field Measurements (암반변형계수의 현장시험을 통한 경험적 추정식의 적정성 평가)

  • Chun Byung-Sik;Lee Yong-Jae;Ahn Kyung-Chul;Shin Jae-Keun;Jung Sang-Hoon
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.251-258
    • /
    • 2006
  • In this paper, the applicability to the Korean rock condition of using the deformation moduli based on Rock Mass Rating (RMR) and Pressuremeter Test (PMT) is evaluated. The correlations among deformation moduli and various rock properties were also analyzed. It appears that the existing correlations using RMR overestimate the deformation moduli and wide variation was found between predicted moduli using these correlations and measured values. As for the correlations among the deformation moduli and various rock properties, Rock Quality Designation (RQD) and unconfined compressive strength (UCS) were found to correlate to deformation moduli reasonably well, but joint spacing and joint conditions appear to correlate poorly to RQD and UCS. Additionally, groundwater can not be correlated with the modulus values. While the depth has very little contribution to deformation modulus, it should be factored in the simple regression analyses with various rock mass properties, especially with the correlations made with UCS, RQD etc. With the deficiencies of these correlations, more in depth analysis techniques such as multivariate correlations may be to reliably estimate deformation modulus of rock mass.

Measurement of Joint Aperture Using 3-D Laser Profilometer (3차원 레이저 측정기를 이용한 절리 간극의 측정)

  • 이희석;이연규;이희근
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.309-320
    • /
    • 2000
  • Aperture is an important parameter for determining the hydraulic characteristics of fractured media. In this study the topography of artificial rock joint surface was measured using 3D laser profilometer to analyze the aperture distribution. The initial aperture distribution was determined when the contact area became one percent of total joint surface. The initial aperture distribution of granite joint, with the mean value of 0.78 mm and the standard deviation of 0.34 mm was much different from that of the marble joint, with the mean value of 0.57 mm and the standard deviation of 0.26 mm. Apertures of both granite and marble showed normal distributions. Aperture distribution with the contact area of 25% was also analyzed. Mean value was decreased to one third compared to the initial aperture, but the standard deviation was decreased slightly. To determine the spatial correlation of the aperture distribution variogram analysis was carried out on the initial aperture data. Most experimental variograms were fitted well with exponential model. It is expected that the measured aperture characteristics can be used for stochastic analysis of fluid flow through rock joints.

  • PDF

Field Experiments on the Cutoff Grouting Around Waterway Tunnel (도수터널의 차수 그라우팅 현장시험)

  • 김덕근;김교원
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.81-99
    • /
    • 2001
  • In order to clarify an effect of the cutoff grouting, a series of field experiments were performed during construction of the waterway tunnel from the River Gilancheon(Andong) to the Youngcheon dam. The experiments were conducted in three different ways based on the grouting time in the construction sequence, i.e., the pre-grouting, after-grouting and consolidation grouting tests. And those were also planned to compare the efficiency of grouting in relation to the material types of grout, base rock types and other geologic factors such as discontinuities, depth and direction of grouting holes, and number of grouting stages. Among the materials of grout employed in the experiments, such as a common Portland cement, a micro-cement, a micro-cement with sodium silicate, and a urethane, the urethane was the most effective as the cutoff grouting. And for the same grout material, the pre-grouting was more effective to cutoff the water inflow comparing to the after-grouting and the consolidation grouting. For the rock types, the grouting efficiency in the sedimentary rocks as a base rock was less than the other rocks such as granite and volcanic rocks, which is believed due to the smaller separation of joints and the abundance of infilling materials in the joints developed in the sedimentary rocks. There was no direct relationship between the total RMR value of the rock mass and the grouting efficiency, however, the joint separation which is one of the RMR criteria is believed to have positive relation to the grouting efficiency. And the direction of the grouting holes might not so much affect on the grouting efficiency while increasing the number of grouting stage showed the better results.

  • PDF

Utilization of induced polarization for predicting ground condition ahead of tunnel face in subsea tunnelling: laboratory test (유도분극을 활용한 해저터널 굴착면 전방 지반상태 예측: 실내실험)

  • Park, Jinho;Lee, Kang-Hyun;Lee, Seong-Won;Ryu, Young-Moo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.383-392
    • /
    • 2015
  • In subsea tunnelling, prediction of the fractured zone (or water bearing zone) ahead of tunnel face saturated by seawater with high water pressure has been a key factor for safe construction. This study verified the feasibility of utilizing induced polarization (IP) survey at tunnel face for predicting the ground condition ahead of the subsea tunnel face. A pore model was proposed to compute chargeability in granular material, and the relationship correlating chargeability with the variables affecting the chargeability was derived from the model. Parametric study has been performed on the variables to figure out the most influential factors affecting the chargeability. The results of the parametric study show that the size of narrow pores ($r_1$) and the salinity of pore water are the most influential factors on chargeability. Laboratory tests were conducted on various types of ground condition by changing the salinity of pore water, the thickness of the fracture zone and the existence of gouge (weathered granite) within the joints of the fractured zone to figure out the effect of the ground characteristics on the IP phenomenon. Test results show that the chargeability of the fractured zone saturated by seawater increases if the joints in the fractured zone are filled with gouge since the infilled gouge will decrease the size of narrow pores ($r_1$).

A Study on Applicability of Equivalent Continuum Flow Model in DFN Media (DFN 매질에 대한 등가연속체 유동모델의 적용 가능성 평가에 관한 연구)

  • Lee, Dahye;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.303-311
    • /
    • 2017
  • The correlation analysis between the results obtained from DFN flow model and equivalent continuum flow model were conducted on total of 72 DFN blocks having various fracture geometry and domain size. A strong linear relation seems to exist between the two approaches under condition that normalized relative error for continuum behavior (ER) is less than 0.2, and the results from both methods are found to almost identical. To explore the field applicability of equivalent continuum flow model in DFN media, a total of 48 numerical schemes related to inflow of underground circular openings were implemented under various DFN configurations. The equivalent continuum flow model in DFN media with a constant hydraulic aperture was evaluated as valid. However, as the anisotropy increases due to variation of the hydraulic aperture, the results are likely to be overestimated compare to the DFN flow model.

Practical visualization of discontinuity distribution in subsurface using borehole image analysis (시추공영상분석을 이용한 지하 불연속면 분포의 가시화 실용연구)

  • 송무영;박찬석
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2002
  • Borehole image analysis has been carried out to obtain the detailed geological data by approach of direct observation. Direct application of borehole image analysis inevitably gives rise to a few of restriction of data acquisition due to the limited information within narrow borehole space. Considering the apparent dip of discontinuity surface depending upon the direction, the visualized program of two-dimensional subsurface discontinuities is coded. Borehole image analysis can compensate the distribution of subsurface discontinuity extending into the expected area of investigation. In order to draw subsurface profile in the proposed area of subsurface construction, visualized program is coded as a window GUI (Graphic User Interface) using Fortran and Visual Basic Programming languages. It is to open publicly for the usage of whoever is in want. Discontinuity distribution map is visualized along the Proposed line of tunnel in the Janggye-ri area, Jangsu-gun. Using the visualized program, the limited information from borehole spatially applies into analysis of overall subsurface structures, and the distributional characteristics of discontinuity anticipate at the proposed area. In addition, spacing and extension of joint and depth of discontinuity effecting tunnel safety can be visualized along the direction of the proposed tunnel. These lines of visualization apply design and construction of fundanmental structures.