• Title/Summary/Keyword: 절대가속도 응답

Search Result 10, Processing Time 0.03 seconds

Effect of Demand Spectrums on the Accuracy of Capacity Spectrum Method (요구곡선 산정방법에 따른 능력스펙트럼법의 유효성 평가 및 비교)

  • Kim, Hong-Jin;Min, Kyung-Won;Park, Min-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.33-42
    • /
    • 2004
  • While transforming the inelastic system into the equivalent elastic one gives an advantage of simpler analysis, the actual inelastic behavior of the system is hardly modeled in the capacity spectrum method (CSM). Therefore, the accuracy of CSM depends on the precise estimation of equivalent period and damping ratio as well as the modification of the elastic response spectrum and the corresponding demand spectrum. In this paper, the effect of demand spectrums on the accuracy of CSM is evaluated. First, the response reduction factors provided in ATC-40 and Euro Code are evaluated. Numerical analysis results indicated that the acceleration responses obtained using the factor of Euro Code are closer to the actual response than those obtained using the factors of ATC-40. Next, the accuracy of CSM is evaluated constructing the demand spectrum using the absolute acceleration responses and pseudo acceleration responses. The results obtained using the absolute acceleration responses were found to be generally larger than those obtained using the pseudo ones. Since CSM often underestimates the response, the use of absolute acceleration response gives the response relatively closer to the exact ones. However, the difference becomes negligible as the hardening ratio and the yield strength ratio become larger.

LQG Controller for the Vibration Control of Building Structures (건물의 진동제어를 위한 LQG제어기)

  • 민경원;이성경
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.243-249
    • /
    • 1999
  • 지진력을 받는 건물의 응답을 능동적으로 제어하기 위해서는 건물의 응답을 측정하고, 이것을 바탕으로 제어력을 산정하여야 한다. 제어력의 산정 방법에는 여러 제어 알고리듬이 적용이 될 수 있는데, 2차 성능지수를 이용하는 LQ제어는 해석의 용이함과 제어의 효율성으로 인하여 널리 쓰이고 있다. 그러나, LQ제어에는 실시간으로 계측이 된 건물의 지반과의 상대 변위 및 속도를 필요로 하나 이러한 상태 변수를 계측하기가 매우 어려워 건물의 제어를 위한 적용에 한계가 있다. 따라서, 계측이 용이한 건물의 절대 가속도를 바탕으로 관측이 용이한 건물의 절대 가속도를 바탕으로 관측기를 이용하여 상태 변수를 추정하여 제어력을 산정하는 LQC 제어 알고리듬이 지진력을 받는 건물에 대한 실용적인 알고리듬이 될 수 있다. 본 연구에서는 이러한 LQC 알고리듬의 성능을 검증하기 위하여 능동제어추진기가 설치된 축소 1층 모형에 대한 해석 및 실험을 수행하였으며, 그 결과 LQC 알고리듬의 제어 효율을 확인할 수 있었다.

  • PDF

Real-Time Hybrid Shaking Table Test of a Soil-Structure Interaction System with Dynamic Soil Stiffness (동적 지반강성을 갖는 지반-구조물계의 실시간 하이브리드 진동대 실험)

  • Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.217-225
    • /
    • 2007
  • This paper proposes the real-time hybrid shaking table testing methods to simulate the dynamic behavior of a soil-structure interaction system with dynamic soil stiffness by using only a structure model as the physical specimen and verifies their effectiveness for experimental implementation. Experimental methodologies proposed in this paper adopt such a way that absolute accelerations measured from the superstructure and shaking table are feedback to the shaking table controller, and then the shaking table is driven by the calculated motion of the absolute acceleration (acceleration feedback method) or the absolute velocity (velocity feedback method) of foundation that is required to simulate the dynamic behavior of a whole soil-structure interaction system. The shaking table test is implemented by reflecting the dynamic soil stiffness, which are differently approximated from the theoretical one depending on the feedback methods, on the shaking table controller to calculate soil part. The effectiveness of the proposed experimental methods is verified by comparing the response measured from the test on a foundation-fixed structural model and that obtained from the experiment of a soil-interaction system under the consideration in this paper and by matching the dynamic soil stiffness reflected on the shaking table controller with that identified using the experimentally measured data.

Performance Evaluation of TMD and TLCD for Earthquake-Induced Response Control (TMD와 TLCD의 지진응답에 대한 제어성능 평가 연구)

  • 김홍진;김형섭;민경원;오정근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.85-91
    • /
    • 2003
  • TLCD is a good alternative to TMD for control of structures because of its cost efficiency, ease of installation, little maintenance requirement, potential for multiple usage, and ease of re-tuning. In this study, the control performances of TMD and TLCD are evaluated and compared for seismically excited structures. Results show that TLCD is more effective than TMD for interstory drift control while TLCD is as effective as TMD for acceleration control. In special. it is shown that interstory drifts are maximally controlled in lower floors and accelerations are reduced most in upper floors. This indicates that TLCD is an effective controller for earthquake-induced structures in terms of structural safety as well as serviceability.

Robust Control of Earthquake Responses considering Higher Mode Uncertainty (고차 모우드 불확실성을 고려한 지진응답의 강인제어)

  • 고현무;박관순;박원석;조익선
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.99-108
    • /
    • 2000
  • 구조물의 능동제어 시스템에서 제어기 설계에 사용되는 구조계의 모델과 실구조계의 차이는 시스템의 성능저하 및 불안정성을 유발할 수 있다 이연구에서는 무시된 고차모우드와 같이 주파수영역에서 표현되는 비구조적 불확실성에 대하여 시스템의 안정성을 보장하도록 강인성을 가지는 LQG/LTR제어이론을 사용하여 구조물의 지진응답제어에 효과적으로 사용할 수 있는 제어기 설계방법을 제시한다 특히 고층건물이나 교탑과 같은 구조물의 지진응답 제어에 적용할 수 있도록 각층의 절대 가속도를 측정변수로 층간상대변위를 제어변수로 설정하여 최적제어기를 구성한다 El Centro 지진압력을 받는 6자유도 전단빌딩모델에 대하여 제어기를 설계하거 수치모사를 수행하여 제시한 제어기가 안정도-강인성을 가지고 지진응답제어에 효과적임을 보인다.

  • PDF

System Identification of a Three-story Test Structure based on Finite Element Model (유한요소모델에 기초한 3층 건물모델의 시스템 식별)

  • 이상현;민경원;강경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.416-423
    • /
    • 2004
  • In this paper, an experimental verification of system identification technique for constructing finite element model is conducted for a three-story test structure equipped with an active mass driver (AMD). Twenty Gaussian white noises were used as the input for AMD, and the corresponding accelerations of each floor are measured. Then, the complex frequency response function (FRF) for the input, the force induced by the AMD, was obtained and subsequently, the Markov parameters and system matrices were estimated. The magnitudes as well as phase of experimentally obtained FRFs match well with those of analytically obtained FRFs.

Development of Novel Method of Seismic Slope Stability Analysis (신(新) 유사정적 사면안정해석 기법 개발)

  • Yun, Seung;Park, Duhee;Lee, Seungho;Hwang, Youngchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops a new hybrid pseudostatic method that links the modified one-dimensional seismic site response analysis and the pseudostatic algorithm. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses were performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure were compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match. The calculated profiles are used to perform pseudostatic analysis. The results show that use of peak or a fraction of acceleration at the surface can seriously underestimate or overestimate the factor of safety, and that the proposed procedure significantly enhances the reliability of a standard procedure.

  • PDF

Real-time Vibration Control of Bridges by MR damper and Lyapunov Control Algorithm (MR댐퍼 및 Lyapunov제어알고리즘을 이용한 교량 구조물의 실시간 진동제어)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong;Park, Seung-Bum;Oh, Sung-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.55-61
    • /
    • 2010
  • This paper is concerned with an experimental research to random vibration control caused by external loads specially in bridges which tend to be structurally flexible. Experimenting on a reduced structure modelled on Seohae Grand Bridge, we inflicted a reduced form of El-centro wave on the model structure to a proper proportion. On the center of its middle span, we placed a shear type MR damper which was to control its vibration and also acquire its structural responses such as displacement and acceleration at the same site. The experiments concerning controlling vibration were performed according to a variety of theories including un-control, passive on/off control, and Lyapunov stability theory. Its control performance was evaluated in terms of the peak absolute displacements, the peak absolute accelerations and the total power required to control the bridge which differ from each different experiment method. Among all the methods applied in this paper, case of Lyapunov control method turned out to be the most effective to reduces of displacement and acceleration. Also, this method could to decrease consuming of external power for vibration control. Finally, it was noteworthy that Lyapunov control method was specially effective in the vibration control employing a semi-active damper such MR damper.

Performance Estimation of Semi-active Real-time Feedback Vibration Control System (준능동형 실시간 Feedback 진동제어시스템의 성능평가)

  • Heo, Gwang Hee;Jeon, Joon Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2011
  • This paper is concerned to constitute a semi-active realtime feedback vibration control system and evaluate it through experiments in order to control in realtime the vibration externally generated, specially on the bridges which is structurally flexible. For the experiment of vibration control, we built a model bridge structure of Seohae Grand Bridge in a 1/200 reduced form and inflicted El-centro wave on the model structure also in a reduced force considering the lab condition. The externally excited vibration was to be controled by placing a shear type MR damper vertically on the center of bridge span, and the response (displacement and acceleration) of structure was to be acquired by placing LVDT and Accelerometer at the same time. As for the experiment concerning controlling vibration, a realtime feedback vibration control experiments were performed under each different condition largely such as un-control, passive on/off control, Lyapunov stability theory control, and Clipped-optimal control. Its control performance under different condition was quantitatively evaluated in terms of the peak absolute displacements, the peak absolute accelerations and the power required for control on the center of span. The results of experiments proved that the Lyapunov control and clipped-iptimal control were effective to decrease the displacement and acceleration of the structure, and also to decrease the power consumption to a great extent. Finally, the semi-active realtime feedback vibration control system constituted in this research was proven to be an effective way to control and manage the vibration generated on bridge structure.

An Experimental Study on Seismic Damage Indicator Considering Cumulative Absolute Velocity Concept (누적절대속도 개념을 고려한 지진손상표시기의 실험적 연구)

  • 이종림;권기주;이상훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.65-71
    • /
    • 2001
  • The nuclear power plant(NPP) should be shut down for inspection and tests prior to a return to power if the earthquake exceeds the operating basis earthquake(OBE). The OBE at the plant is considered to have been exceeded if the computed cumulative absolute velocity(CAV) from the earthquake record is greater than 0.16g-sec. However, the CAV criterion should be determined considering the seismic and structural characteristics of the plant. An experimental study using shaking table is conducted in this study to evaluate intensity of CAV criterion. Appropriate level of CAV is evaluated based on the test results using the developed seismic damage indicator(SDI) model. The model consists of stacked acrylic cylinders and is developed to behave consistently for each directional seismic load. The result of the experimental study in dicates that the CAV criterion of 0.16g-sec is conservative enough to be applied to Korean NPPs since the CAV value of the seismic input motion of the Korean standard NPPs ranges from 0.3 to 0.5 g-sec. The developed SDI is expected to be useful not only in easily determining OBE exceedance but also in evaluating earthquake damage quantitatively to provide guidelines for better post-shutdown inspection and test.

  • PDF