Proceedings of the Korean Society Of Semiconductor Equipment Technology
/
2003.12a
/
pp.99-104
/
2003
본 연구에서는 고분자 전해질 연료전지의 촉매 슬러리 함침 도구와 전극 촉매층 형성 방법이 전극 성능에 미치는 영향을 조사하였다. 촉매 슬러리 함침 도구는 브러쉬, 스프레이 건, 스크린 프린터를 이용하였으며, 전극 촉매층 형성 방법은 스크린 프린터를 이용하여 고분자 전해질 막 위에 전극 촉매층을 형성하는 방법, 카본 페이퍼 위에 전극 촉매층을 형성하는 방법과 위의 두 방법을 결합하여 전극 촉매층을 형성하는 방법으로 구분하였다. 스크린 프린터로 제조된 전극은 브러쉬와 스프레이 건으로 제조된 전극들과 비교하여 백금 함침량을 50% 이상 줄일 수 있었으며, 고분자 전해질 막 위에 전극 촉매층을 형성하는 방법과 카본 페이퍼에 전극 촉매층을 형성하는 방법을 결합한 전극이 $1A/\textrm{cm}^2$에서 0.6V로 가장 좋은 I-V 특성을 나타내었다.
Chun, Jeong Hwan;Jo, Dong Hyun;Park, Ki Tae;Kim, Sung Hyun
한국신재생에너지학회:학술대회논문집
/
2010.11a
/
pp.71.1-71.1
/
2010
고분자 전해질 연료전지(PEMFC) 내의 기체확산층(GDL)은 셀 내의 물 관리에 중요한 역할을 수행한다. 일반적으로 다공성 기제(GDBL) 위에 미세기공층(MPL)을 코팅한 2층 구조의 기체확산층이 사용되는데, 이 미세기공층은 카본파우더와 테프론의 혼합물로 이루어져 있으며 촉매층에서 발생한 물을 셀 밖으로 빠르게 배출하는 역할을 수행한다. 본 연구에서는 다양한 기공분포를 갖는 미세기공층을 제조하여 고분자 전해질 연료전지 성능에 미치는 영향을 분석하였다. 미세기공층 슬러리내에 암모늄염 계열의 기공형성제를 혼합하여 다공성 기제 위에 코팅한 후 다양한 온도조건에서 건조함에 따라 기공분포가 다른 미세기공층을 제조하였다. 이렇게 제조된 미세기공층의 물성은 수은기공도계, FE-SEM, 자체적으로 제조한 기체투과도 측정 장치를 사용하여 측정하였으며, 단위 전지 성능 측정은 두 개의 가습조건(RH100%, RH50%)에서 실시하였다. 기공분포 측정결과 건조온도가 높은 미세기공층은 건조온도가 낮은 미세기공층에 비해 직경이 1,000 - 20,000 nm 인 대공극(macropore)의 수가 많지만, 직경이 100 nm 이하의 미세공 (micropore)의 수가 적은 것을 확인하였다. 전지성능 측정 결과 고가습 조건 (RH100%)에서는 미세공 (micropore)이 발달한 미세기공층을 포함한 기체확산층을 사용한 경우 가장 우수한 성능을 보여고, 저가습 조건 (RH50%)에서는 대공극 (macropore)이 발달한 미세기공층을 포함한 기체확산층을 사용한 경우 가장 우수한 성능을 나타내었다. 이는 물배출에 유리한 미세공 (micropore)의 성질과 원료 기체의 이동에 유리한 대공극(macropore)의 성질에 의한 것으로 판단된다. 따라서 셀 운전 가습조건에 따라 최적화된 기공구조를 갖는 미세기공층을 사용함으로써 셀 운전 성능을 향상 시킬 수 있을 것으로 예상된다.
The chaacterisitics of a commercial membrance-coverd electrode in air-saturated saline solution were investigated in terms of a steadystate one-dimensional model. The electrode system miiersed in an aqueous medium consists of three layers: an external concentration boundary layer, a membrance, and an inner electrolyte layer. The membrance can be permeabld to the water and impermeable to the ionic species. In stationary midium, the water migrates from the external medium to the inner electrolyte layer until a thermodynamic equilibrium is reached. In a following midium, however, there is a reverse direction of water movement due to the hyrodynamic pressure differential until both thickness of the electrolyte layer and the membrance are equal.
Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.
Hui-Su Yang;Gyeong-seok Oh;Dong-Soo Kim;Jin-Hyuk Kwon;Min-Hoi Kim
Journal of IKEEE
/
v.27
no.1
/
pp.25-29
/
2023
Effect of the processes of polysilazane solid electrolyte layer and silver (Ag) active electrode on the electrical characteristics of memristor was investigated. The memristor with the solid electrolyte annealed at higher temperature exhibited the higher set voltage and better memory retention characteristics than that annealed at lower temperature. The increase in the set voltage and the improvement of the memory retention characteristic at high annealing temperature were attributed to a reduction in the void density and an increase in the void uniformity inside the solid electrolyte, respectively. In the case where the polysilazane solution's concentration is high, the memristor exhibited rapid degradation of low resistive state even annealed at high temperature. Lastly, it was shown that the memristor with the solution-processed Ag active electrode showed WORM property unlike that with the vacuum-processed Ag active electrode. The WORM property was possibly due to morphological defects present in the solution-processed Ag active electrode.
An, Jihwan;Kim, Hyong June;Yu, Jin Geun;Oh, Seongkook
Journal of the Microelectronics and Packaging Society
/
v.23
no.3
/
pp.31-35
/
2016
This paper demonstrates the successful application of yttria-stabilized zirconia thin films deposited by atomic layer deposition to the anode-side interlayer for cerium oxide electrolyte based solid oxide fuel cell. At the operating temperature over $500^{\circ}C$, the electrical conductivity of cerium oxide electrolyte is known to dramatically increase and, therefore, the open circuit voltage of the cell decreases leading to the decrease of the performance. Ultra-thin (60 nm) atomic layer deposited yttria-stabilized zirconia thin film in this study conformally coated the anode-side surface of the cerium oxide electrolyte and efficiently blocked the electrical conduction through the electrolyte. Accordingly, the open circuit voltage increased by up to 20%, and the maximum power density increased by 52% at $500^{\circ}C$
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.6
/
pp.4013-4018
/
2014
A 0.45 $cm^2$ DSSC device with a glass/FTO/blocking layer/$TiO_2$/N719(dye)/electrolyte/50 nm-Pt/50 nm-Au/FTO/glass was prepared to examine the stability of the Au/Pt bilayered counter electrode (CE) with electrolyte and the energy conversion efficiency (ECE) of dye-sensitized solar cells (DSSCs). For comparison, a 100 nm-thick Pt only CE DSSC was also prepared using the same method. The photovoltaic properties, such as the short circuit current density ($J_{sc}$), open circuit voltage ($V_{oc}$), fill factor (FF), and ECE, were checked using a solar simulator and potentiostat with time after assembling the DSSC. The microstructure of the Au/Pt bilayer was examined by optical microscopy after 0~25 minutes. The ECE of the Pt only CE-employed DSSC was 4.60 %, which did not show time dependence. On the other hand, for the Au/Pt CE DSSC, the ECEs after 0, 5 and 15 minutes were 5.28 %, 3.64 % and 2.09 %, respectively. The corrosion areas of the Au/Pt CE determined by optical microscopy after 0, 5, and 25 minutes were 0, 21.92 and 34.06 %. These results confirmed that the ECE and catalytic activity of Au/Pt CE decreased drastically with time. Therefore, a Au/Pt CE-employed DSSC may be superior to the Pt only CE-employed one immediately after integration of the device, but it would degrade drastically with time.
Park, Jong-Hyeok;Akter, Mahamuda;Kim, Beom-Seok;Jeong, Dahye;Lee, Minyoung;Shin, Jiyun;Park, Jin-Soo
Journal of the Korean Electrochemical Society
/
v.25
no.4
/
pp.174-183
/
2022
Polymer electrolyte fuel cells and water electrolysis are attracting attention in terms of high energy density and high purity hydrogen production. The catalyst layer for the polymer electrolyte fuel cell and water electrolysis is a porous electrode composed of a precious metal-based electrocatalyst and an ionomer binder. Among them, the ionomer binder plays an important role in the formation of a three-dimensional network for ion conduction in the catalyst layer and the formation of pores for the movement of materials required or generated for the electrode reaction. In terms of the use of commercial perfluorinated ionomers, the content of the ionomer, the physical properties of the ionomer, and the type of the dispersing solvent system greatly determine the performance and durability of the catalyst layer. Until now, many studies have been reported on the method of using an ionomer for the catalyst layer for polymer electrolyte fuel cells. This review summarizes the research results on the use of ionomer binders in the fuel cell aspect reported so far, and aims to provide useful information for the research on the ionomer binder for the catalyst layer, which is one of the key elements of polymer electrolyte water electrolysis to accelerate the hydrogen economy era.
Electric double layer capacitors(EDLCS) based on the charge stored at the interface between a hi팀 surface area carbon electrode and an organic electrolyte solution are widely used as a maintenance-free power source for IC memories and microcomputers. The achievement of the excellent performance of the capacitor requires an electrolyte solution which provides high conductivities over a wide temperature range and good electrochemical stabilities to allow the capacitor to be operated at high voltage. The electrochemical capacitor using a carbon material as electrodes and using an organic electrolyte with $1M-LiPF_6$ in PC-GBL-DEC(volume ratio 1:1:2) has specific capacitance of 64F/g.
Je, Jun-Ho;Kim, Jong-Rok;Doh, Sung-Woo;Kim, Moo-Hwan
Transactions of the Korean Society of Mechanical Engineers B
/
v.35
no.5
/
pp.487-490
/
2011
We used X-ray tomography to carry out an experimental study to visualize the effect of freeze and thaw cycles on the gas diffusion layer (GDL) in a polymer electrolyte membrane fuel cell (PEMFC). A PEMFC has freeze and thaw cycles if the fuel cell is operating at a below-freezing ambient temperature. The cycle permanently deforms the fuel-cell capillary structures and reduces the ability of the cell to generate electric power and also reduces its service life. The GDL is the thickest capillary layer in the fuel cell, so it experiences the most deformation. The X-ray tomography facility at the Pohang Accelerator Laboratory was used to observe the structural changes in GDLs induced by a freeze and thaw cycle. We discuss the effects of these structural changes on the power production and service life of PEMFCs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.