• Title/Summary/Keyword: 전해질용액

Search Result 133, Processing Time 0.03 seconds

The Effect of the Surface-modified Carbon Anode on the Electrochemical Performance in Li-ion Battery (리튬이온전지용 탄소 부극재료의 표면개질에 따른 충방전 특성)

  • 김정식;윤휘영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.25-29
    • /
    • 2001
  • This study examined the effects of carbon surface modification by the epoxy resin coating on the electrochemical performance. The mesocarbon microbeads(MCMB) carbon was surface-modified by coating the epoxy resin and its electrochemical properties as an anode was examined. The surface coating of MCMB was carried out by refluxing the MCMB powders in a dilute H2SO4 solution, and mixing them with the epoxy resin-dissolved tetrahydrofuran(THF) solution. Under heat-treatment of the coated MCMB at the temperature over $1000^{\circ}C$, the epoxy-resin coating layer was converted into amorphous phase which was identified by a high resolution transmission electron microscope (HRTEM). The epoxy resin coated MCMB has higher Brunauer-Emmett-Teller (BET) surface area, higher charge/ discharge capacity and better cycleability than a raw MCMB without coating. The reason for the enhancement of cell performance by the epoxy resin coating were considered as the epoxy resin coating layer plays an important role to be a barrier for carbon reacting with electrolyte and to retard the formation of passivation layer.

  • PDF

Influence of Oxygen-/Nitrogen-containing Functional Groups on the Performance of Electrical Double-Layer Capacitor (전기이중층 커패시터의 성능에 미치는 산소/질소 함유 관능기들의 영향)

  • Kim, Jieun;Kwon, Young-Kab;Lee, Joong Kee;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1043-1048
    • /
    • 2012
  • In this study, activated carbons (ACs) were modified as electrode materials for an electric double layer capacitor (EDLC) by controlling oxygen- and nitrogen-containing functional groups. The morphological and chemical properties of ACs were analyzed through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectrometer, automatic elemental analyzer (EA) and Boehm titration. Also, charge/discharge tests were performed to investigate the EDLC performance. Oxygen- and nitrogen-containing functional groups were introduced on the surface of ACs through acid and urea treatments, respectively. ACs with nitrogen-containing functional groups showed 2 mA increase of gravimetric discharge capacity and quick achievement of maximum charge/discharge performance. However, ACs with oxygen-containing functional groups showed low discharge capacity and its gradual decrease during further cyclic test, since the functional groups interrupted adsorption/desorption of charges in the electrolyte on the surface of ACs.

Electrochromic Properties of Li+-Modified Prussian Blue (리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구)

  • Yoo, Sung-Jong;Lim, Ju-Wan;Park, Sun-Ha;Won, Ho-Youn;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • The durability problem of Prussian blue in non-aqueous $Li_+$-based electrolytes has been due to the degradation of the Prussian blue electrode matrix during the insertion/extraction processes by $Li_+$. In this work, we designed and synthesised the Prussian blue without reducing the electrochromic performance in non-aqueous $Li_+$-based electrolytes. Prussian blue was electrodeposited on a glass which has ITO coating, and the coating solution is a mixture solution of $FeCl_3\;and\;K_3Fe(CN)_6$ with deionized water added HCl, KCl, and LiCl, respectively. The durability of Prussian blue was evaluated by an in-situ transmittance measurement during a continuous and pulse potential cycling test, and measured by electroactive layer thickness due to evaluating the degradation.

High-k 적층 감지막(OA, OH, OHA)을 이용한 SOI 기판에서의 고성능 Ion-sensitive Field Effect Transistor의 구현

  • Jang, Hyeon-Jun;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.152-153
    • /
    • 2012
  • Ion sensitive field effect transistor (ISFET)는 전해질 속 각종 이온농도를 측정하는 반도체 이온 센서이다. 이 소자의 기본 구조는 metal oxide semiconductor field effect transistor (MOSFET)에서 고안되었으며 게이트 컨택 부분이 기준전극과 전해질로 대체되어진 구조를 가지고 있다 [1]. ISFET는 기존의 반도체 CMOS 공정과 호환이 가능하고 제작이 용이할 뿐만 아니라, pH용액에 대한 빠른 반응 속도, 비표지 방식의 생체물질 감지능력, 낮은 단가 및 소자의 집적이 용이하다는 장점을 가지고 있다. ISFET pH센서의 감지특성에 결정하는 요소 중 가장 중요한 것은 소자의 감지막이라고 할 수 있다. 감지막은 감지 대상 물질과 물리적으로 직접 접촉되는 부분으로서 일반적으로 기계적/화학적 강도가 우수한 실리콘 산화막(SiO2)이 많이 사용되어져 왔다. 최근에는 기존의 SiO2 보다 성능이 향상된 감지막을 개발하기 위하여 Al2O3, HfO2, ZrO2, 그리고 Ta2O5와 같은 고유전 상수(high-k)를 가지는 물질들을 EIS 센서의 감지막으로 이용하는 연구가 활발하게 진행되고 있다. 하지만 지속적인 high-k 물질들에 대한 연구에도 불구하고 각각의 물질이 갖는 한계점이 드러났다. 본 연구에서는 SOI기판에서 SiO2 /HfO2 (OH), SiO2/Al2O3 (OA) 이단 적층 그리고 SiO2/HfO2/Al2O3 (OHA) 삼단적층 감지막을 갖는 ISFET을 제작하고 각 감지막의 특성을 평가하였다. 평가된 특성의 결과가 아래의 표1에 요약되었다. 그 결과, 각 high-k 물질이 갖는 한계점을 극복하기 위하여 제안된 OHA감지막은 기존에 OH, OA가 갖는 장점을 취하면서 단점을 최소화 시키는 최적화된 감지막의 감지특성을 보였다.

  • PDF

The Characterization of New Type of Alkaline Fuel Cell using Hydrogen Storage Alloys (수소저장합금을 이용한 신개념의 알칼라인 연료전지의 특성에 관한 연구)

  • Kim, Jin-Ho;Lee, Ho;Lee, Han-Ho;Lee, Paul S.;Lee, Jal-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.135-142
    • /
    • 2002
  • 본 연구는 Chemical hydride 형태의 수소발생제를 포함한 액체연료를 이용한 신개념의 알칼라인 연료전지의 특성을 분석하였다. Chemical hydride는 연료전지의 수소공급원으로써 사용될 수 있으며, 본 연구팀은 KOH 전해질에 수소발생제인 Sodium Borohydride ($NaBH_4$)를 첨가하여 제조된 액체연료를 알칼라인 연료전지에 공급함으서 상온에서 매운 우수한 전기 화학적 성능결과를 얻을 수 있었다. 이때 음극 찰물질로 $ZrCr_{0.8}Ni_{1.2}$ 수소저장합금이 사용되었으며, 양극은 방수처리된 카본지 위에 분산된 Pt/C 가 사용되었고, air가 latm으로 양극에 공급되었다. 음극에 대한 XRD 분석결과 음극에서의 산화에 의해 Sodium Borohydride ($NaBH_4$)가 분해되어 수소가 발생되며, 연속적으로 액체연료가 주입되어도 전지가 작동하는 것을 확인할 수 있었다. 이때 에너지밀도는 6,000 Ah/kg (for $NaBH_4$ or $KBH_4$)이다.

Modeling and Measurements of the Activity Coefficients and Solubilities of Amino Acids in the L-valine/electrolyte and L-proline/electrolyte Aqueous Solutions (L-Valine/전해질 및 L-Proline/전해질 수용액에서 아미노산의 활동도계수와 용해도의 측정 및 모델링)

  • Lee, Bong-Seop;Kim, Ki-Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.93-105
    • /
    • 2012
  • Activity coefficients and solubilities of L-Valine and L-Proline in aqueous solutions containing each of four electrolytes such as NaCl, KCl, $NaNO_3$ and $KNO_3$ were measured at 298.15 K. The measurements of activity coefficients were carried out in the electrochemical cell coupled with two ion-selective electrodes (cation and anion), and the solubilities were measured by the gravimetric analysis of saturated solutions in equilibrium with the solid phase of amino acid. The measured activity coefficients of electrolytes and amino acids were correlated with the theoretical thermodynamic model presented in the previous work [Korean Chem. Eng. Res. 48(4), 519(2010)]. It was found that the activity coefficients of amino acids and electrolytes described based on the our previous model were well agreeable with experimental data. Also the experimental solubility data of L-Valine and L-Proline were successfully correlated with the thermodynamic relation mentioned in the previous work.

Electrochemical Studies of Light Lantanide Complexes (Part 1) (가벼운 란탄족 원소 착물의 전기화학적 연구 (제 1 보))

  • Kang Sam-Woo;Park Chong-Min;Chang Choo-Hawn;Do Lee-Mi;Suh Moo-Yul
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 1993
  • The eletrochemical behavior of light lanthanide complexes has been investigated by several electrochemical techniques in alkaline solutions. The composition of the complexes was determined by spectrophotometric method to be 1 : 1 and reduction mechanism was two steps 1 electron transfer reaction. The half wave potential of first peak depended on pH and cathodic current showed remarkably adsorptive properties. The results of DC and CV investigation demonstrated the quise-reversible nature of the electron transfer. The anion radical formed after first one electron reduction process, dimerizes to form dimer. The apparent irreversible behavior of the second wave is a result of the existence of a fast protonation following the second electron transfer. An exhaustive electrolysis was carried out at controlled potential of -1.80 V, deep blue color of the solution became progressively weaker, and then the solution became colorless solution. The final product of an exhaustive electrolysis is electro-inactive. The appearance of four steps may be explained by the fact the reduction of Ln-OCP elucidated ECEC mechanism.

  • PDF

Depolymerization of Fucoidan by Contact Glow Discharge Electrolysis(CGDE) (접촉 글로우 방전 전기분해(CGDE)에 의한 후코이단의 저분자화)

  • Bae, Jung Shik;Lee, Jung Shik;Kim, Young Suk;Sim, Woo Jong;Lee, Ho;Chun, Ji Yeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.886-891
    • /
    • 2008
  • Contact glow discharge electrolysis(CGDE) is an unconventional electrolysis where plasma is sustained by D.C. glow discharge between an electrode and the surface of electrolyte surrounding it at high voltage. In this study, the behavior of CGDE in NaCl solution and the depolymerization of fucoidan by CGDE were investigated. After onset of CGDE, increase of voltage enhanced Glow discharge which resulted in low current density and low temperature in NaCl electrolyte. From the variation of molecular weight of fucoidan with the reaction time, it was demonstrated that the degradation of fucoidan followed a first-order rate law. Molecular weight of fucoidan treated with CGDE was about 40 times lower compared to initial fucoidan without content decrease of sulfate and fucos.

Improving the Stability of Gel Mass of Vegetable Soft Capsule (식물성 연질캡슐의 겔 조성물 안정성 개선 연구)

  • Lee, Yeon Hui;Weon, Kwon Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.397-404
    • /
    • 2016
  • The objective of this study is to determine the physical characteristics of the gel mass of vegetable soft capsules and to maintain their rheological stability for improving manufacturability. The effect of each capsule shell component on the viscosity of the gel mass was studied for 6 hours, and the effects of adding an alkalizer or electrolytes to neutralize the sulfate groups on the carrageenan molecule were also investigated. Carrageenan was identified as a major component that affects the viscosity of the gel mass, and it showed unstable properties with age. The viscosity and stability of the gel mass were remarkably improved when an alkalizer or electrolytes were added at 3.0% relative to the carrageenan. 3.6 M KCl showed the highest effect on increasing the viscosity. A stable gel mass composition for vegetable soft capsules was successfully developed, which can be considered to increase the application of the capsules in the pharmaceutical and food industries.

Preparation of IPN-type Polyelectrolyte Films Attached to the Electrode Surface and Their Humidity-Sensitive Properties (전극 표면에 부착된 IPN 형태의 전해질 고분자의 제조 및 그들의 감습특성)

  • Han, Dae-Sang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.565-573
    • /
    • 2010
  • Copoly(2-(dimethylamino)ethyl methacrylate)(DAEMA)/butyl acrylate (BA) and copoly(methyl methacrylate)(MMA)/BA/2-(cinnamoyloxy)ethyl methacryate (CEMA), which were cross-linked with dibromoalkane and UV irradiation, respectively, were prepared for the precursors of interpenetrating polymer network (IPN) humidity-sensitive films. 3-(Triethoxysilyl)propyl cinnamate (TESPC) was used as a surface-pretreating agent for the attachment of IPN-polyelectrolyte to the electrode surface by UV irradiation. Humidity sensitive polymeric thin films with an IPN structure were prepared by crosslinking reactions of copoly(DAEMA/BA) with 1,4-dibromobutane (DBB) and copoly(MMA/BA/CEMA) by UV-irradiation. The anchoring of an IPN-polyelectrolyte into the substrate was carried out via the photochemical $[2{\pi}+2{\pi}]$ cycloaddition. The resulting humidity sensors showed a high sensitivity in the range of 20~95%RH and a small hysteresis (<1.5%RH). The response time for adsorption and desorption process at 33~94%RH was 48 and 65 s, respectively, indicating a fast response. The effects of the concentration of copolymers, molar ratio of crosslinking agents and time of the precursor solution for dip-coating on their humidity sensitive properties including water durability were investigated.