• Title/Summary/Keyword: 전파 경로손실

Search Result 119, Processing Time 0.023 seconds

Analysis of Path Loss Model and Channel Characteristics at 2.40Hz on Navy Warship's Internal Space (해군 함정 내부공간에 대한 2.4GHz 대역의 채널 특성과 경로손실모델 분석)

  • Choi, Dae-Geun;Lee, Jung-Kyu;Kim, Young-Hoon;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1422-1432
    • /
    • 2011
  • Recently, wireless network has been playing an important role in communication system and the applications have become wider with its big technological leap. In defence sector, there are some attempts to use wireless networks to go beyond the wire system. Especially, most internal space of the warships have the wired communication system, which are complicated and inefficient. In this paper, we measure and make a channel model about the internal parts of the warship which contain compartments and corridors including many differences from general indoor environment for establishing wireless networks in warship's internal space. In the unique environment made of metal, we measure 2.4GHz signals using continuous wave(CW) and analysis the environment to present indoor path-loss model for comparing with results from the ray-tracing tool. Moreover, we draw the conclusion that the environment of warships has a wide difference from conventional environments and put the results to practical use in warship's internal space.

3D Propagation Prediction Model for Indoor Environment (실내 환경에서의 3차원 전파예측 모델)

  • 고욱희
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.133-141
    • /
    • 1999
  • In this paper, we present an indoor propagation prediction model which is based on a three-dimensional ray-tracing technique. In this model, instead of considering all obstacles such as furnitures and fixtures, etc., only main obstacles to the propagation such as walls, ceiling and floors are modeled as slabs with finite thickness and conductivity, and the significant phenomena of propagation are considered, so we can calculate simply and predict accurately the propagation losses. The propagating rays are considered to be reflected and transmitted specularly at the boundaries of obstacles, and diffracted at edges. The reflection and transmission losses on flat obstacles are calculated by using ray tracing method, and the diffraction losses at edges are calculated by using the uniform theory of diffraction (UTD) for finite conductivity media. The results simulated for some cases by this propagation model good agree with the measured value of pathloss.

  • PDF

Analysis on The Wave Propagation Using Ray-Tracing Method (Ray-tracing기법을 이용한 전파전파분석)

  • Lee, Kang-Mi;Kim, Baek-Hyun;Shin, Kyung-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.363-366
    • /
    • 2010
  • 본 논문에서는 원형구조의 전파환경을 위한 경로손실을 다각형모델링과 수학적 모델링을 통해 분석하였다. 원형의 통신환경은 비교적 좁은 반경에 곡률이 거의 없고, 내부는 공기저항을 고려한 감압상태로 Ray-tracing 기법은 원형이라는 구조적 특징을 완벽히 적용하는데 문제가 있기 때문에 원에 가까운 다각형을 모델링하였다. 다각형 모델링 방법와 수학적 방법의 전파손실분석결과 반사횟수와 관계없이 유사한 전파손실성능을 확인하였다. 본 논문은 무선을 이용한 튜브 즉, 원형의 철도운영환경도 고려되고 있는 시점에서, 기존의 철도환경과 다른 환경에 대한 무선환경분석을 위한 기초자료로 사용될 수 있을 것이다.

  • PDF

The Path Loss Estimation Model over the sea at 2.4 GHz Wireleless Network (해상 무선통신 네트워크에서 2.4 GHz 대역의 해수면 경로손실 예측 모델 연구)

  • Yang, Seung-Chur;Byun, Seung-Kyu;Lee, Sung-Ho;Kim, Jong-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.601-602
    • /
    • 2013
  • 경로손실 예측 모델은 무선 네트워크 설계를 위한 기본 척도이며, 적용 환경과 적용 시스템에 영향을 받는 특징이 있다. 대부분의 기존 연구는 도심, 교외와 같은 육상 환경을 기반으로 한다. 일반적으로 해수면 경로 손실은 전파의 잦은 굴절로 인해 지표면 보다 크며, 주파수에 비례한 경로손실이 있다고 알려져 있다. 하지만 해상 환경의 관련 연구는 자유공간에 적용하기 때문에 예측 모델의 정확성을 낮춘다. 본 논문은 해상 무선통신 서비스를 위한 2.4 GHz 대역의 해수면 경로손실 예측 모델을 제안한다. 이를 위해 육상과 해상에서 각각 수신신호 세기를 측정하고, 다양한 예측 모델과 비교 분석하여 실용성과 정확성을 입증한다.

  • PDF

Analysis TVWS Propagation Environment for Indoor M2M Service (실내 M2M 서비스를 위한 TVWS 전파 환경 분석)

  • Yun, Deok-Won;Chang, Hyung-Min;Lee, Won-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.8
    • /
    • pp.763-771
    • /
    • 2013
  • In this paper, the propagation characteristics for ISM(Industrial Scientific and Medical) and TVWS(TV White Space) in indoor building environment are analyzed in comparison with theoretical and experimental results, the excellent propagation characteristics of the TVWS is confirmed. To this end, signals which have center frequencies of 503 MHz and 2.4 GHz are generated in building propagation environment. Through that, received power strength is measured according to the location and measured path loss is analyzed. Theoretical path loss is calculated using Hata, Extended Hata, Extended Hata SRD, ITU-R P.1238 and reliability for channel model in indoor environment is analyzed.

Evaluation of the ITU-R Recommendation P.1812 for Urban Environments (도심 환경에서의 ITU-R P.1812의 구현과 분석)

  • Lee, Chang-Hoon;Sung, Yu-Suk;Kim, Seong-Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.155-158
    • /
    • 2009
  • 원활한 방송 서비스를 제공하고 손쉬운 방송망 구축을 위해서 가장 중요한 것은 서비스 하 고자 하는 주파수 대역과 환경에 맞는 전파 모델을 선택하는 것이다. 적절한 전파 모델을 선택하여 수신 전계 강도를 정확하게 예상함으로써 효율적인 방송망을 설계할 수 있는 것이다. 방송망 주파수 대역에서 전파 분석 시 널리 이용되고 있는 모델은 ITU-R 권고안 P.1546 모델이다. 이 모델은 기존의 Okumura 나 Hata 모델처럼 측정을 기반으로 하여, 송신단 높이, 수신단 높이, 주파수, 거리, 시간율, 공간율 들을 고려하여 완성한 점대 영역 경로 손실 예측 모델이다. 측정을 기반으로 완성된 경로 손실 모델이기 때문에 실제 환경에 적용하기 위해서는 전계강도 예측 지역의 수신 환경 특성을 반영한 보정값을 더해줘야 한다. 이러한 문제를 해결하기 위해서 ITU-R 연구 3그룹은 지형 프로파일에 기반한 새로운 모델들을 개발하였다. 송, 수신단 사이의 지형 데이터가 고도화되면서 좀 더 정밀한 송, 수신단 사이의 지형 프로파일을 추출해 낼 수 있으며 이는 정확한 전계강도 예측을 가능하게 하였다. 이에 연구 3그룹은 고도화된 디지털 지형 데이터를 이용하여 자유 공간에서 경로 손실, 지형에 의한 회절 손실, 대류권 산란 손실 그리고 ducting 현상을 반영하여 전계강도를 산출해 내는 ITU-R P.1812 모델을 제안하였다. 본 논문에서 우리는 ITU-R 권고안 P.1812를 분석 구현하고 기존의 대표 모델인 P.1546 모델과의 비교 분석을 시도하였다.

  • PDF

A Position Revision Method by Path-Loss Factor in GIS based Wireless Sensor Node Deployments (GIS기반 무선 센서노드 배치에서 경로손실을 고려한 위치 보정 방법)

  • Bae, Myung-Nam;Kwon, Hyuk-Jong;Kang, Jin-A;Lee, In-Hwan
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.111-121
    • /
    • 2011
  • In this paper, we proposes a sensor node positioning algorithm that utilizes the geo-spatial elements and considers the factors to represent the propagation loss generated by the various obstacles in the urban wireless environments. First, we measures the propagation loss about the radio frequencies in major road of the urban, and defines the correlation between the measured loss and the environment information for the road and its surrounding get from Urban GIS. Secondly, through the utilization of the loss-environment correlation, we describes the detailed instruction for requiring the radio coverage decision and deploy system implementation for the wireless sensor node in urban. By the consideration of interference factor by the building and the linear structure of road, we can evaluate the path loss below 5dB RMS error. And, we proposes the way to revise the sensor node deployment based on the corelation and the measured path loss.

Wave Propagation Characteristics for Mobile Communications beyond 3G in Microcellular Environments (마이크로셀룰라 환경에서의 차세대 이등 통신을 위한 전파 전파 특성)

  • Jo Han-Shin;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.430-439
    • /
    • 2006
  • This paper presents the a measured path-loss characteristics for mobile communications beyond 3G in microcellular residential area and street microcell at 3.4, 5.3, and 6.4 GHz band signals. The residential area is divided into two sections, one of which is composed of fifteen-story appartment buildings. The other section comprises four-story houses. The street microcell is classified line-of-sight(LOS) and nonline-of-sight(NLOS) areas. Both residential areas have standard deviations independent of the residential area classification, whereas the path loss exponents in the apartments is higher than those in area for same frequencies. A two-ray model is applied to analyse the path-loss charateristics in LOS areas. In LOS areas, an empirical breakpoint, whose distance is 6 percent shorter than a theorical breakpoint, is founded. Further, a sudden power level drop occurs at a transition point from LOS region to NLOS area. Path loss exponent is found to be significantly higher for non-LOS region than for LOS region. The power level drop due to corner loss and path-loss exponents both increase as the distance between the transmitter and the corner increases.

Radio Path Loss and Angle of Arrival Measurements to the Radio Environments at 60GHz (60GHz 대역에서의 전파 환경별 경로손실 및 도래각 측정)

  • Song, Ki-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2233-2240
    • /
    • 2007
  • This paper presents the measured path loss exponents and standard deviations using measured data at 60GHz to analyze the propagation characteristics of millimeter wave bands having great demand for picocellular communications. In addition the angle of arrival(AOA) were measured to analyze the arrival direction of muitipath waves affecting the received signal strength. As results of analysis, the pathloss exponents in each environment are found to be lower than 2 for free space pathloss exponent. They were determined with the qualities of bottom materials affecting signal strength. The angles of arrival by multipath waves were different with the circumference structures between transmitter and receiver. That is, the multipath waves excluding direct and ground reflected wave were difficult to find in wide space such a gymnasium and playground, however the wall multipath waves were found to arrive at receiver in the corridor. The multipath waves at 60GHz can be known to hardly affect to the received signal strength because of weak signals compared with direct wave.

Analysis of Propagation Characteristics according to the Change of Transmitter-Receiver Location in Indoor Environment (실내 환경에서 송수신기 위치 변화에 따른 전파 전달 특성 분석)

  • Lee, Seong-Hun;Cho, Byung-Lok;Lee, Hwa-Choon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.211-218
    • /
    • 2020
  • The radio wave propagation characteristics of the transmitter and receiver position change in the indoor environment were predicted through simulation, then the results obtained through the transmission loss measurement were compared and analyzed with the simulation results. The conference room was chosen as the environment for measuring transmission loss, and the radio transmission characteristics of the two environments were compared by selecting the exhibition hall without interior decorations and fixtures. In each indoor environment, the position of the transmitter chose two cases. One located in the center of the front wall and the other in the center of the side wall, and the position of the receiver moved along the centerline of the conference room and the side wall, measuring the receiving power. For each change in transmitter-receiver position, received power of 3GHz and 6GHz band were measured and compared with the simulation forecast results. The changes in received power at each receiving point were analyzed according to the location of the transmitter and the frequency band variation.