• Title/Summary/Keyword: 전차선로 임피던스 예측

Search Result 2, Processing Time 0.02 seconds

Study on the Railway Fault Locator Impedance Prediction Method using Field Synchronized Power Measured Data (실측 동기화 데이터를 활용한 교류전기철도의 고장점표정장치 임피던스 예측기법 연구)

  • Jeon, Yong-Joo;Kim, Jae-chul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.595-601
    • /
    • 2017
  • Due to the electrification of railways, fault at the traction line is increasing year by year. So importance of the fault locator is growing higher. Nevertheless at the field traction line, it is difficult to locate accurate fault point due to various conditions. In this paper railway feeding system current loop equation was simplified and generalized though measured data. And substation, train power data were measured under synchronized condition. Finally catenary impedance was predicted through generalized equation. Also simulation model was designed to figure out the effect of load current for train at same location. Train current was changed from min to max range and catenary impedance was compared at same location. Finally, power measurement was performed in the field at train and substation simultaneously and catenary system impedance was predicted and calculated. Through this method catenary impedance can be measured more easily and continuously compared to the past method.

A Study on Real Time Catenary Impedance Estimation Technique using the Synchronized Measuring Data between Substation and Train (변전소와 차량간의 동기화를 통한 실시간 전차선로 임피던스 예측 기법 연구)

  • Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1458-1464
    • /
    • 2013
  • This paper proposed a new real time catenary impedance estimation technique using synchronized power data from the measured data of operating vehicle and substation for catenary protective relay and fault locator setting. This paper presented estimation equation of catenary impedance using synchronized power data between substation and vehicle of AT feeding system for the performance verification of the proposed technique. Also AC feeding system is modeled through power analysis program and performance was verified through simulation according to various load changes. We verified that average 2.38%(distance equivalent 23.8 m) error appeared between the proposed estimation equation of catenary impedance and power analysis program simulation output in no connection double track system between up track and down track. Furthermore, We confirmed that estimation error is bigger depending on the increasing the distance from substation and vehicle impedance using only using vehicle current when calculating vehicle impedance in connection double track system between up track and down track. But, We confirmed that the proposed technique estimated accurately catenary impedance regardless of vehicle impedance and distance from substation.