• Title/Summary/Keyword: 전장생산설계

Search Result 13, Processing Time 0.016 seconds

Design of a LDC Recycling Load Tester for Hybrid and Electric Vehicles (하이브리드 및 전기 자동차용 LDC 재생형 부하 시험기 설계)

  • Lee, Choon-Il;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6258-6263
    • /
    • 2014
  • The LDC (Low Voltage DC-DC Converter) used for hybrid vehicles and electric vehicles was utilized to supply the electric apparatus load with a voltage and to charge the auxiliary batteries by receiving a high DC voltage from the high voltage battery. The LDC has a long-time load test during the manufacturing process. On the other hand, it has the disadvantage of considerable energy consumption because it has the structure to release the power as 100% heat during a load test. Therefore, in this paper, a recycling load test method was proposed and 75~90% energy saving was realized.

Optimum design of injection mold heater for uniform curing of LSR seal for waterproof connector (방수 커넥터용 LSR Seal의 균일 경화를 위한 사출 금형 히터의 최적 설계)

  • Song, Min-Jae;Cha, Baeg-Soon;Hong, Seok-Kwan;Ko, Young-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.310-315
    • /
    • 2017
  • Automotive waterproof connectors are highly functional parts that must be air-tight in a complex environment. In the LSR multi-cavity injection molding process for manufacturing waterproof connectors, it is important to maintain a uniform curing temperature between the cavities in order to obtain a quality product. For this purpose, we designed the capacity of the cartridge heater differently for each position, and then linked the heat transfer analysis and optimization module to obtain the optimal cartridge heater capacity. As a result of the optimization analysis, the temperature deviation between cavities was decreased from $13.1^{\circ}C$ to $8.1^{\circ}C$ compared with the case in which constant heater capacity was applied, so that the design criterion could be satisfied within a temperature deviation of $10^{\circ}C$ for uniform curing. This study suggests that this method can be applied efficiently to the design of a large area multi-cavity LSR mold heater.

Evaluation of Structural Safety of Polyethylene Boats by Drop Test Method (낙하시험에 의한 폴리에틸렌 보트의 구조 안전성 평가)

  • Lee, Sung-Riong;Kang, Gyung-Ju;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.531-542
    • /
    • 2017
  • The structural safety of small craft, such as steel ships and FRP ships, can be estimated using the measurement test of the hull plate thickness or the longitudinal bending strength test. A polyethylene boat is made using inexpensive HDPE and can be mass produced. The structural safety of a polyethylene boat cannot be guaranteed because a polyethylene boat hull is notspecified in the KR technical rules. The inspection procedure of sailing yachts and pleasure boats and drop test method of ISO standard 12215-5 propose the structural strength required for small crafts as the drop test height. Therefore, in this study, the drop test of a polyethylene boat hull was carried out based on the inspection procedure of a sailing yacht and pleasure boat and the drop test method of ISO standard 12215-5. The drop load was acquired by the drop acceleration ofa boat hull. Structural analysis and safety of a polyethylene boat were performed by the drop load and allowable stress criteria. The calculation results of the hull plate thickness by structural design specification of ISO standard 12215-5 showed that polyethylene boat hull was more than two times thicker than a steel ship hull and the boat hull determined by the inspection procedure of sailing yacht and pleasure boat and drop test method of ISO standard 12215-5 was more than 1.2 times thicker than the boat hull determined by structural design specification of ISO standard 12215-5. Therefore, inspection procedure of sailing yachts and pleasure boats and drop test method of ISO standard 12215-5 was much more conservative than the structural design specification of ISO standard 12215-5 and could be used as the structural design method of a polyethylene boat.