• Title/Summary/Keyword: 전자유체역학

Search Result 76, Processing Time 0.031 seconds

Design of Optimal Thermal Structure for DUT Shell using Fluid Analysis (유동해석을 활용한 DUT Shell의 최적 방열구조 설계)

  • Jeong-Gu Lee;Byung-jin Jin;Yong-Hyeon Kim;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.641-648
    • /
    • 2023
  • Recently, the rapid growth of artificial intelligence among the 4th industrial revolution has progressed based on the performance improvement of semiconductor, and circuit integration. According to transistors, which help operation of internal electronic devices and equipment that have been progressed to be more complicated and miniaturized, the control of heat generation and improvement of heat dissipation efficiency have emerged as new performance indicators. The DUT(Device Under Test) Shell is equipment which detects malfunction transistor by evaluating the durability of transistor through heat dissipation in a state where the power is cut off at an arbitrary heating point applying the rating current to inspect the transistor. Since the DUT shell can test more transistor at the same time according to the heat dissipation structure inside the equipment, the heat dissipation efficiency has a direct relationship with the malfunction transistor detection efficiency. Thus, in this paper, we propose various method for PCB configuration structure to optimize heat dissipation of DUT shell and we also propose various transformation and thermal analysis of optimal DUT shell using computational fluid dynamics.

Design and Fabrication of an Electromagnetic Flowmeter (전자기유량계의 설계 및 제작)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1385-1392
    • /
    • 2003
  • An electromagnetic flowmeter(EMF) was developed and its characteristics were compared with a commercial EMF. The developed EMF was designed as the 100 mm nominal diameter. A signal processing circuit was also developed for generating the magnetic field and converting the flow signal to flowrate and flow quantity. In order to obtain a more stable and reliable flow signal, the double magnetizing frequency was adopted for magnetizing the coil of the EMF. For the characterization of the developed EMF, the uncertainty of calibrator was estimated within $\pm$0.5 %. The evaluation procedure of the uncertainty followed the ISO Guide to the Expression of Uncertainty in Measurement. It was found that the flow signals between the electrodes were about $\pm$60-$\pm$300$\mu$V, which were sufficient for the discrimination of flowmeter and the protection of noise. The test results against the calibrator showed the good linearity in the range of 3 ㎥/h and 70 ㎥/h. A commercialized design of the EMF based on the current study will be technically more competitive in domestic and foreign market.

Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff (우주발사체 발사 시 음향하중 저감을 위한 발사대 설계)

  • Tsutsumi, Seiji
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.331-341
    • /
    • 2020
  • At liftoff, launch vehicles are subject to harmful acoustic loads due to the intense acoustic waves generated by propulsion systems. Because these waves can cause electronic and mechanical components of launch vehicles and payloads to fail, predicting and mitigating acoustic loads is an important design issue. This article presents the latest information about the generation of acoustic waves and the acoustic design methods applicable to the launch pad. The development of the Japanese Epsilon solid launcher is given as an example of the new methodology for launch pad design. Computational fluid dynamics together with 1/42 scale model testing were performed for this development. Effectiveness of the launch pad design to reduce acoustic loads was confirmed by the post-flight analysis.

조선기술의 발전현황과 전망 (1)

  • Kim, Jae-Bok
    • Defense and Technology
    • /
    • no.9 s.175
    • /
    • pp.34-39
    • /
    • 1993
  • 조선기술은 기계공학, 구조해석학, 유체역학, 재료공학 및 전기, 전자공학 등을 총망라하는 종합 공학으로서, 각 부분 전문기술이 균등하게 발전해야 비로소 향상된 고부가, 고품질 함정의 개발과 건조가 가능합니다 소위 첨단기술로 불려지는 자동화, 고지능화 및 고신뢰도 기술의 도입으로 선박의 고속화, 경량화, 정숙화, 성력화 및 은밀화와 더불어 제한된 공간에서 승조원의 쾌적한 생활 향상을 위한, 인체공학적인 측면에서도 개선될 수 있도록 연국 개발되고 있습니다

  • PDF

Characteristic study of fluid flow of laminar impinging jet in an aligned magnetic field (자기장이 인가된 영역에서의 층류 충돌제트의 유동특성 변화에 대한 수치적 연구)

  • Lee, Hyun-Goo;Ha, Man-Yeong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1845-1850
    • /
    • 2004
  • The laminar impinging jet flow fields were investigated with or without magnetic fields. The transient phenomenon from steady to unsteady flow was founded at specific Reynolds number ranges. In unsteady flow region, the magnetic fields make flow stable. So the characteristics of fluid flow at impingement wall are changed

  • PDF

Characteristic study of heat transfer of laminar impinging jet in an aligned magnetic field (자기장이 인가된 영역에서의 층류 충돌제트의 열전달특성 변화에 대한 수치적 연구)

  • Lee, Hyun-Goo;Ha, Man-Yeong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1447-1451
    • /
    • 2004
  • The laminar impinging jet thermal fields were investigated with or without magnetic fields. The transient phenomenon from steady to unsteady flow was founded at specific Reynolds number ranges. In unsteady flow region, the magnetic fields make flow stable. So the characteristics of heat transfer at impingement wall are changed

  • PDF

Chaos의 세계(III)

  • 서용권
    • Journal of the KSME
    • /
    • v.31 no.6
    • /
    • pp.540-550
    • /
    • 1991
  • chaos이론은 현재 사회과학과 자연과학의 많은 분야에 있어서 연구 수단 또는 연구 대상으로서의 폭발적인 인기를 누리고 있다. 열 . 유체역학, 동력학, 구조역학, 화학(화학 분야에 있어서의 chaos개념은 Prigogine(1978년Nobel상 수상자)과 Stengers의 저서에 잘 기술되어 있음), 플라즈마 물리학, 전자공학, 전기공학 등 우리들에게 친숙한 학문은 말할 것 없고, 의학, 생태학, 생물학, 인구학, 경제학, 회계학 등에서도 종래의 것과는 완전히 다른 시각에서 현상을 분석하고 예측하 려는 노력을 하고 있다. 그리고 최근에는 computer graphics 에서도 간단한 수식 모델로 fractal set를 형성시켜, 각종 나무, 꽃, 파도, 구름등 자연의 산물들을 성공적으로 묘사하고 있다. Gleick는 chaos이론에 의한 각 분야에 있어서의 새로운 현상을 Newton-Einstein 이후의 또 다른 과학 혁명이라 부르고 있다. 그리고, 지금까지의 서양 학문이 줄곧 세부화의 길을 달려 왔으나 chaos에 의해 그 과정이 역으로 될 것이라는 인식이 일고 있다. 이는 chaos의 질서의 법칙이 보편타당성(universality)의 일면을 갖고 있다는데 기인되며, 종합화를 지향하는 동양의 제반 학 문과 그 성격상 일맥상통한 점이 있어, chaos학이 동양인의 기호 학문이 되리라 믿는다.

  • PDF

Microfluidic Array for Simultaneous Detection of Antigen-antibody Bindings (항원-항체 결합의 동시 검출을 위한 미세 유체 어레이)

  • Bae, Young-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper, a microfluidic array biochip for simultaneously detecting multiple antigen-antibody bindings was designed and implemented. The biochip has the single channel in which microreaction chambers are serially connected, and the antibody-coated microbeads are packed in each microreaction chamber. In addition, the weir structure was fabricated in the microchannel using the gray-scale photolithography in order to trap the microbeads in the microreaction chamber. Three kinds of antibodies were chosen, and the antibodies were immobilized onto the microbeads by the streptavidin-biotin conjugation. In the experiment, as the fluorescence-labeled antigens were injected into the microchannel, the antigen-antibody bindings were completed in 10 minutes. When the solution with multiple antigens was injected into the microchannel, it was observed that the fluorescence intensity increased in only the corresponding microreaction chambers with few non-specific binding. The microfluidic array biochip implemented in this study provides, even with the consumption of tiny amount of sample and fast reaction time to simultaneously detect multiple immunoreactions.

A Numerical Study on the Flow and Performance Characteristics of a Piezoelectric Micropump with Electromagnetic Resistance for Electrically Conducting Fluids (전자기 전항을 이용한 압전 구동방식 마이크로 펌프의 유동 및 성능 특성에 관한 수치해석적 연구)

  • An, Yong-Jun;Choi, Chung-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2788-2793
    • /
    • 2008
  • A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD(Magnetohydrodynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS(Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studies by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study.

  • PDF

Analysis on Aerodynamic Characteristics of Drying Process in R2R Printed Electronics (롤투롤 전자인쇄 건조공정의 공기역학적 특성분석)

  • Seo, Yang-Ho;Chang, Young-Bae;Kim, Chang-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.95-103
    • /
    • 2010
  • Roll to Roll (R2R) is one of the most promising production technologies in the printed electronics such as OLEDs, e-paper, backplanes, RFID because this technology can save production cost and increase production speed. Printed electronics includes various processes such as printing, drying, winding, unwinding, and so on. In printed electronics R2R system, air-flotation oven is employed for drying process. Therefore, it is essential to introduce efficient and fast drying process when printing is finished. This paper considers the analysis of drying process in R2R that involves hot air flow. Air-flotation oven consists of non-contact supports and drying of coated web materials such as plastic films and paper. In this paper, experimental results and numerical analysis of pressure-pad air bar are investigated. The aerodynamic characteristics of pressure-pad air bar are numerically calculated using computational fluid dynamics (CFD) approach. Then the measured values of the aerodynamic forces for air bars are compared with those of CFD analysis.