• Title/Summary/Keyword: 전자선 치료

Search Result 228, Processing Time 0.022 seconds

Surface Dose Measurement of Electron Beam within the Magnetic Field Variation (자기장 내에서 전자선의 표면선량 변화 측정)

  • Je, Jae-Yong;Noh, Kyung-Suk;Shin, Oon-Jae;Park, Cheol-Woo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.103-107
    • /
    • 2008
  • Purpose: This paper describes a electron field presence of magnetic field, intensity and shape surface dose variation to clinical application possibility. Materials and Methods: The using 6 MeV electron and $10{\times}10\;cm^2$ field size, 9 hole to shielding block make the by measure the film, when the magnetic field position inside and outside of the X-Omat film and parallel plate ionization chamber using the surface dose measured. Results: Present of 4 cm to the side at angle about 3 degree from beam center, use of ring type magnetic is 0.9% increase the surface dose, lens block located in the magnetic field the surface dose 1.58% increase, half magnetic field's position on the side of them at the field center of the 3.6% increase of the surface dose. Conclusion: Surface dose variation is with magnetic field about the mean electron beam of progress direction change, orbit region patient's is inconvenient without surface dose increase percentage case goodness will be used as a useful way.

  • PDF

Evaluation of Detection Performance of TlBr Materials for the Development of Electron Beam Quality Assurance Dosimeters (전자선 Quality Assurance 선량계 개발을 위한 TlBr 물질의 검출성능 평가)

  • Yang, Seung-Woo;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.513-518
    • /
    • 2022
  • Electron beam quality assurance (QA) should be done regularly for accurate radiation therapy. However, QA tools used in clinical practice are designed mainly for X-rays. So, a dosimeter for electron beam QA is required. Therefore, in this study, the electron beam detection performance was measured by using a thorium bromide material as an electron beam sensor. In addition, it was evaluated whether it could be applied with an electron beam QA dosimeter. Reproducibility, linearity, and dose rate dependence were evaluated at 6 MeV and 9 MeV energies. As a result of reproducibility, it showed a maximum output change of 0.92% at 6 MeV and 1.15% at 9 MeV. The linearity result evaluation and determination coefficient were presented as 0.9998. As a result of dose rate dependence evaluation, relative standard deviation 0.51% at 6 MeV and relative standard deviation 1.07% at 9 MeV were presented. The manufactured TlBr sensor shows the ability to detect radiation that meets the criteria for evaluation of reproducibility, linearity, and dose rate dependence. These results mean that the TlBr dosimeter is applicable as an electron beam QA dosimeter.

A Study on Electron Dose Distribution of Cones for Intraoperative Radiation Therapy (수술중 전자선치료에 있어서 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Yun, Hyong-Geun
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 1992
  • For intraoperative radiation therapy using electron beams, a cone system to deliver a large dose to the tumor during surgical operation and to save the surrounding normal tissue should be developed and dosimetry for the cone system is necessary to find proper X-ray collimator setting as well as to get useful data for clinical use. We developed a docking type of a cone system consisting of two parts made of aluminum: holder and cone. The cones which range from 4cm to 9cm with 1cm step at 100cm SSD of photon beam are 28cm long circular tubular cylinders. The system has two 26cm long holders: one for the cones larger than or equal to 7cm diamter and another for the smaller ones than 7cm. On the side of the holder is an aperture for insertion of a lamp and mirror to observe treatment field. Depth dose curve. dose profile and output factor at dept of dose maximum. and dose distribution in water for each cone size were measured with a p-type silicone detector controlled by a linear scanner for several extra opening of X-ray collimators. For a combination of electron energy and cone size, the opening of the X-ray collimator was caused to the surface dose, depths of dose maximum and 80%, dose profile and output factor. The variation of the output factor was the most remarkable. The output factors of 9MeV electron, as an example, range from 0.637 to 1.549. The opening of X-ray collimators would cause the quantity of scattered electrons coming to the IORT cone system. which in turn would change the dose distribution as well as the output factor. Dosimetry for an IORT cone system is inevitable to minimize uncertainty in the clinical use.

  • PDF

Empirical Study on Medical LINAC System for Radiation Therapy (방사선 치료를 위한 의료용 선형 전자가속기에 대한 실증연구)

  • Park, Su-Mi;Song, Seung-Ho;Jo, Hyun-Bin;Jeong, Woo-Cheol;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.242-244
    • /
    • 2019
  • 본 논문은 방사선 치료에 사용되는 선형 전자가속기(LINAC)의 작동 원리와 구성 등 의료용 LINAC의 전반을 다룬다. 의료용 LINAC은 전자총에서 발사된 전자를 가속기 튜브 내에서 가속시켜 전자빔을 발생시키고, 이러한 전자빔을 금속 표적에 충돌시켜 발생한 X 선을 인체에 조사하는 원리이다. 최근에는 O-arm, C-arm 등 3-D 촬영을 위한 치료기가 개발됨에 따라, 의료용 LINAC의 전자총, 마그네트론 등을 구동하는데 사용되는 고전압 전원장치 또한 소형화와 고밀도화가 요구되는 추세이다. 본 논문에서는 마그네트론 구동을 위한 고밀도 40kV/100A 음극성 펄스 모듈레이터와 정전압 정전류 제어 및 50kV 절연이 가능한 히터 전원장치를 설계 및 제작하였으며, 9.3GHz, 1.7MW X-Band 마그네트론 연계실험을 통해 고효율 고신뢰성의 동작을 확인하였다.

  • PDF

A Study on Dose Distribution of Small Irradiation Field in the Electron Therapy (전자선 치료에 있어서 작은 조사면적의 선량분포에 관한 고찰)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Journal of Yeungnam Medical Science
    • /
    • v.8 no.2
    • /
    • pp.114-120
    • /
    • 1991
  • In electron therapy, low melting point alloy is used for shaping of the field. Electron field shaping material affect the output factor as well as the collimator system. The output factors of electron beams for shaped fields from NELAC-1018 were measured using ionization chamber of Farmer type in water phantom. The output factors of electron beams depend on the incident energy, inherent collimator system and the size of shaped field. Obtained results were followings. 1. In the smaller applicator, output varied extremely according to extent of collimator opening. 2. The higher energy, the output is less varied according to treatment field at small field.

  • PDF

A Study on the Effect of Field Shaping on Dose Distribution of Electron Beams (전자선의 선량분포에 있어서 Field Shaping의 효과에 관한 연구)

  • Kang, Wee-Saing;Cho, Moon-June
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.165-172
    • /
    • 1986
  • In electron therapy, lead cutout or low-melting alloy block is used for shaping the field. Material for shaping electron field affects the output factor as wet 1 as the collimation system. The authors measured the output factors of electron beams for shaped fields from Clinac-18 using ionization chamber of Farmer type in polystyrene phantom. They analyzed the parameters that affect the output factors. The output factors of electron beams depend on the incident energy, collimation system and size of shaped field. For shaped field the variation of output factor for the field size (A/P) has appearence of a smooth curve for all energy and all applicator collimator combination. The output factors for open field deviate from the curves for shaped fields. An output factor for a given field can be calculated by equivalent field method such as A/P method, if a combination of applicator and collimator is fixed.

  • PDF

A Study on the Characteristics of Therapy Radiation Detector with Diode (다이오드를 이용한 치료방사선 검출기의 특성에 관한 연구)

  • 이동훈;지영훈
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.129-138
    • /
    • 1995
  • High-energy and high-dose X-ray and electron beam have been used in radiation therapy after developing particle accelerators. It is recommended to irradiate patients exect real dose for improving therapy effectiveness by International Committee on Radiation Units and Measurement. The radiation detector for daily beam checks of medical accelerators is described. Using thirteen silicon diodes, we have designed the diode detector providing information about calibration, beam symmetry, flatness, stability variation according to radiation damage, time and general quality assurance for both photon and eletron beams. we also compared these measurement values with those of using ionization chamber, film and semiconductor dosimeter.

  • PDF

Aluminum, Copper and Lead as Shielding Materials in 6 MeV Electron Therapy (6 MeV 전자선 치료 시 차폐물질로서 알루미늄, 구리, 납)

  • Lee, Seung-Hoon;Cha, Seok-Yong;Lee, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.457-466
    • /
    • 2014
  • During irradiation of lesions in cancer treatment with high energy electrons, normal tissue and critical organs are protected by the shielding material. Scattered radiation that generated the shielding materials affect the depth dose and atomic number. Therefore, we want to examine secondary particles and the scattered photons through calculation and its associated analysis, and compare the measurement for the aluminum, copper, and lead shielding substance of which thickness has 95% charge reduction. Dose change rate which effected scattering radiation was found to be +0.88% for material thickness, +0.43% for atomic number, and +19.70%, +15.20%, +12.40% for measurement, +25.00%, +15.10%, +13.70% for calculation on the aluminum, copper, and lead materials of which thickness has 95% charge reduction, respectively, As a result, we found that scattering rate was dependent on thickness than atomic number. In the dose increasing rate, scattered electrons are more important than scattered photon. For the above mentioned reasons, I think that high atomic number materials should be applied to reduce scattered radiation that generated with thickness effect.

A Study on the Treatment of Combine Electron Beam in the Treatment of Breast Cancer Tumor Bed (유방암 Tumor bed 치료 시 혼합 전자선 치료 방법에 대한 고찰)

  • Lee, Geon Ho;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Du Sang;Ahn, Min Woo;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • Purpose: The usefulness of using single-electron radiation for secondary radiotherapy of breast cancer patients after surgery is assessed and the use of a combine of different energy. Methods and materials : In this study, 40 patients (group A) using energy 6 MeV and 9 MeV, and 19 patients (group B) using a combine of 9 MeV and 12 MeV were studied among 59 patients who performed secondary care using combine electronic radiation. Each patient in each group, 6 MeV, 9 MeV, Combine(6 MeV / 9 MeV) and 9 MeV, 12 MeV, Combine (9 MeV / 12 MeV) were developed in different ways, and the maximum doses delivered to the original hospital, D95, D5, and $V_3$, $V_5$, $V_{10}$ were compared. Result: The D95 mean value of Group A treatment plan was $785.33{\pm}225.37cGy$, $1121.79{\pm}87.02cGy$ at 9 MeV, and $1010.98{\pm}111.17cGy$ at 6 MeV / 9 MeV, and the mean value at 6 MeV / 9 MeV was most appropriate for the dose. The mean values of the low dose area $V_3$ and $V_5$ in the lung of the breast direction being treated were $3.24{\pm}3.49%$ and $0.72{\pm}1.55%$ at 6 MeV, the highest 9 MeV at $7.25{\pm}4.59%$, $3.07{\pm}2.64%$, the lowest at 6 MeV. Maximum and average lung dose was $727.78{\pm}137.27cGy$ at 6 MeV / 9 MeV, $49.16{\pm}24.44cGy$, highest 9 MeV at $998.97{\pm}114.35cGy$, $85.33{\pm}41.18cGy$, and lowest 6 MeV at $387.78{\pm}208.88cGy$, $9.27{\pm}6.60cGy$. The value of $V_{10}$ was all close to zero. Group B appeared in the pattern of Group A. Conclusion: Relative differences in low-dose areas of the lungs $V_3$ and $V_5$ were seen and were most effective in the dose transfer of tumor bed in the application of combined energy. It is thought that the method of using electronic energy in further radiation treatments for breast cancer is a more effective way to use the energy effect of limiting energy resources, and that if you think about it again, it could be a little more beneficial radiation treatment for patients.

Analysis of dose from surface to near the buildup region in the therapeutic X-ray beam (표피로 부터 buildup 영역까지 흡수되는 암치료용 방사선의 선량분석)

  • Vahc, Young-Woo
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.41-50
    • /
    • 1995
  • The absorbed dose and contaminant electron distribution of therapeutic X-ray beam (15MV photon) was studied with a half blocked beams of 30$\times$30$\textrm{cm}^2$ and field size ranging from 5$\times$5 to 30$\times$30$\textrm{cm}^2$. For a 15MV photon beam energy, the value of the depth of dose maximum, d$_{max}$, gradually decrease with increasing field size from 5$\times$5 to 30$\times$30$\textrm{cm}^2$ due to mainly by contaminant electrons which are produced in the flattening filter and scattered by collimator jaws, tray holder〔Lucite〕, blocking block and air. The results suggest that separate dosimetry data should be kept for blocked and unblocked field. The inherence of the contaminant electrons to the open field depth of maximum dose can lead to mistaken results if attenuation measurements are made at that depth. A nurmerous contaminant electrons mainly were distributed as shape of corn in the central photon beam and their path length in the water were shorter than 30mm because of the electrons energy having around 6MeV. These results clearly appears that the substraction of scattered electrons (electrons and positrons) from the total depth dose curve not only lowers the absolute dose in the bulidup region and surface dose, it also causes a shift of d$_{max}$ to a deeper depth. In the terapeutic high energy photon beam, the absorbed dose near the buildup region is the combined result of incident contaminant electrons and phantom generated electronsrons.

  • PDF