• Title/Summary/Keyword: 전자선 치료

Search Result 226, Processing Time 0.025 seconds

Dosimetry by Using EBT2 Film for Total Skin Electron Beam Therapy (TSET) (전신 피부 전자선 치료(TSET)에서 EBT2 필름을 사용한 선량측정)

  • Hwang, Ui-Jung;Rah, Jeong-Eun;Jeong, Ho-Jin;Ahn, Sung-Hwan;Kim, Dong-Wook;Lee, Sang-Yeob;Lim, Young-Gyung;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Park, Sung-Young;Pyo, Hong-Ryull;Chung, Weon-Kuu
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.60-69
    • /
    • 2010
  • For treatment of Total Skin Electron beam Therapy (TSET), measurement of dose at various conditions is need on the contrary to usual radiotherapy. When treating TSET with modified Stanford technique based on linear accelerator, the energy of treatment electron beam, the spatial dose distribution and the actual doses deposited on the surface of the patient were measured by using EBT2. The measured energy of the electron beam was agreed with the value that measured by ionization chamber, and the spatial dose distribution at the patient position and the doses at several point on the patient's skin could be easily measured by EBT2 film. The dose on the patient that was measured by EBT2 film showed good agreement with the data measured simultaneously by TLD. With the results of this study, it was proven that the EBT2 film can be one of the useful dosimeter for TSET.

Fabrication of Backscatter Electron Cones for Radiation Therapy (산란전자선을 이용한 강내측방조사기구의 제작과 특성)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2001
  • Purpose : Irradiation cones by using backscatter electrons are made for the treatment of superficial small lesions of skin, oral cavity, and rectum where a significant dose gradient and maximum surface dose is desired. Methods and Materials : Backscatter electrons are produced from the primary electron beams from the linear accelerators. The design consists of a cylindrical cone that has a thick circular plate of high atomic number medium (Pb or Cu) attached to the distal end, and the plate can be adjusted the reflected angle. Primary electrons strike the metal plate perpendicularly and produce backscatter electrons that reflect through the lateral hole for treatment. Using film and a parallel plate ion chamber, backscatter electron dose characteristics are measured. Results : The depth dose characteristic of the backscatter electron is very similar to that of the hard x-ray beam that is commonly used for the intracavitary and superficial lesions. The basckscatter electron energy is nearly constant and effectively about 1.5 MeV from the clinical megavoltage beams. The backscatter electron dose rate of $35\~85\;cGy/min$ could be achieved from modern accelerators without any modification. and the depth in water of $50\%$ depth dose from backscatter electron located at 6mm for $45^{\circ}$ angled lead scatter. The beam flatness is dependent on the slit size and the depth of treatment, but is satisfactory to treat small lesions. Conclusions : The measured data for backscatter electron energy, depth dose flatness dose rate and absolute dose indicates that the backscatter electrons are suitable for clinical use.

  • PDF

Design Features and Operating Characteristics of the MM-22 Microtron for Radiotherapy (방사선 치료용 MM-22 마이크로트론의 설계 특징과 동작 특성)

  • Bak, Joo-Shik;Lee, Dong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.380-388
    • /
    • 1990
  • The MM-22 medical microtron at Korea Cancer Center Hospital is now operational for high energy electron and photon therapy, This microtron is designed to produce 5.3-22.5 MeV electron beams and deliver these to the treatment head through beam transport system with an intensity and stability suitable for cancer treatment. The availability of high quality radiation modalities from the MM-22 shows new possibilities in the treatment of deep seated tumours. Principle of operation, system structures and operating characteristics of the MM-22 are described in this paper.

  • PDF

Comparison of Monitor Units Obtained from Measurements and ADAC Planning System for High Energy Electrons (측정과 ADAC 치료계획 시스템에서 계산된 고에너지 전자선의 Monitor Unit Value 비교)

  • Lee, Re-Na;Choi, Jin-Ho;Suh, Hyun-Suk
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • The purpose of this study is to evaluate the monitor unit obtained from various methods for the treatment of superficial cancers using electron beams. Thirty-three breast cancer patients who were treated in our institution with 6, 9, and 12 MeV electron beams, were selected for this study. For each patient, irregularly shaped treatment blocks were drawn on simulation film and constructed. Using the irregular blocks, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and three-dimensional radiation treatment planning (3D RTP) system (PINNACLE 6.0, ADAC Laboratories, Milpitas CA) Measurements were made in solid water phantom with plane parallel (PP) chamber (Roos, OTW Germany) at 100 cm source-to surface distances. CT data was used to investigate the effect of heterogeneity. Monitor units were calculated by overriding CT values with 1 g/㎤ and in the presence of heterogeneity. The monitor unit values obtained by the above methods were compared. The dose, obtained from measurement in solid water phantom was higher than that of RTP values for irregularly shaped blocks. The maximum differences between monitor unit calculated in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. When CT data was used at a various gantry angle the agreement between the TPS data with and without density correction was within 3% for all energies. These results indicate that there are no significant difference in terms of monitor unit when density is corrected for the treatment of breast cancer patients with electrons.

  • PDF

자기장을 이용한 미래형 방사선치료에 관한 연구

  • 오영기;정동혁;김기환;신교철;김정기;김성규;지영훈;김진기
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.55-55
    • /
    • 2003
  • 본 연구에서는 최근 미래형 방사선치료 기술로서 관심이 집중되고 있는 자기장을 이용한 선량분포 변환 및 집중기술에 대하여 물리적 배경과 임상적 응용 가능성을 논의하였다. 먼저 물리적 이론으로부터 물질속 자기장에서 전자의 운동을 고찰하였으며 다음에는 몬테칼로 계산을 이용하여 임상에 이용되는 고에너지 광자와 전자선에 대하여 선량분포를 계산하였다. 물에 인가된 수 Tesla 자기장에 대하여 전자들의 기본 경로는 자기장과 수직방향으로 편향을 받으며 원궤도를 취하였으며 궤도반경은 에너지의 손실에 따라 점차 줄어드는 것으로 나타났다. 가로방향의 인가 자기장에 대한 몬테칼로 계산결과 광자 및 전자선에 대하여 자기장 인접영역에서 급격한 선량증가 현상이 발생하였는데 10 MV 광자선의 경우에 3T와 5T에서 각각 약 40%와 80%의 선량증가를 확인하였으며 전자선의 경우에도 유사한 결과가 나타남을 확인하였다. 또한 자기장 종단영역에서는 흡수선량의 급격한 감소가 발생하는 것으로 나타났는데, 본 연구에서는 이러한 특성들을 이용하여 종양에 방사선량을 집중시키고 주변 정상조직을 효과적으로 보호할 수 있는 미래형 최적화 방사선치료의 모델들을 제시하였다. 본 연구의 주요결과들은 최근 관련 실험들로부터 점차 명백해지고 있으며, 자기장을 병행한 방사선치료 기술의 국내 기반기술 확보에 기여할 것으로 기대한다.

  • PDF

Evaluation of Lead Oxide Dosimeter for Quality Assurance of Electron Beam in Radiotherapy (방사선치료 전자선의 정도관리를 위한 Lead Oxide 선량계 평가)

  • Yang, Seungwoo;Han, Moojae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.79-83
    • /
    • 2021
  • In radiation therapy, electron beam is often used in the treatment of superficial lesion. Accurate measurements are required because electron beam interacts with them in the beam path and affects dose measurements. However, no research has been conducted on electron beam quality assurance. in this study, PbO-based dosimeter was fabricated as a basic study for electron beam quality assurance. Thus, the reproducibility and linearity of the energy of 6, 9, and 12 MeV were analyzed to evaluate measurement accuracy and precision. Reproducibility measurements show RSD value of 1.024%, 1.019% and 0.890%, respectively, at 6, 9, and 12 MeV. linearity measurements show 0.9999 R2 at 6, 9, and 12 MeV altogether. Both evaluations show that the PbO dosimeter has very good measurement accuracy and precision with excellent results.

Research of 6 MeV Electron Dose Distribution (6 MeV Electron Therapy에서의 Electron Dose Distribution에 관한 연구)

  • Je Jae-Yong;Park Chul-Woo;Jin Sung-Jin;Park Eun-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.161-166
    • /
    • 2005
  • Purpose : Electron is used for the treatment of skin cancer, breast cancer, and head and neck cancer in clinic. Our study is performed to check the isodose distribution in source surface distance(SSD)and source bolus distance(SBD)setup, nipple influence to isodose distribution of electron, junctional area isodose variation of photon and electron field. Materials and Methods : The electron dose distribution measures the diameter for 20 cm hemisphere paraffin phantom 2 made. It inserted the film between 2 paraffin phantom and it investigated it got radiation and dose distribution curve. Results : The 8% of isodose difference is with the surface distance(SSD)and source bolus distance(SBD)setup. The electon when the nipple exists inside the field, as nipple size it cuts the bolus and when it puts out and there is a possibility of getting the dose distribution which is homogeneous. When in the junction of electron and photon it uses the bolus it uses in the electron field whole, there is a possibility of getting the dose distribution which is homogeneous. Conclusion : The dose distribution decrease from the SBD setup. To reduce the influence of nipple, corresponding volume of bolus should be removed. And bolus covering all the electron field reduced hot and cold spot of junctional area of photon. In the future becomes the research which sees an effective electron therapy.

  • PDF

Evaluation of dose variation at the vertex during Total Skin Electron Beam (전신 피부 전자선 조사(TSEB)시 두정부(Vertex)에서의 선량 변화 평가)

  • Jeon Byeong-Chul;An Seung-Kwon;Lee Sang-Gyu;Kim Joo-Ho;Cho Kwang-Hwan;Cho Jung-Hee;Park Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.112-116
    • /
    • 2000
  • Purpose : The vertex scalp is always tangentially irradiated during total skin electron beam(TSEB) This study was discuss to the dose distribution at the vertex scalp and to evaluate the use of an electron reflector. positioned above the head as a means of improving the dose uniformity. Methods and Materials Vetex dosimetry was performed using ion-chamber and TLD. Measurements were 6 MeV electron beam obtained by placing an acrylic beam speller in the beam line. Studies were performed to investigate the effect of electron scattering on vertex dose when a lead reflector $40{\times}40cm$ in area, was positioned above the phantom. Results : The surface dose at the vertex, in the without of the reflector was found to be less than $37.8\%$ of the skin dose. Use of the lead reflector increased this value to $62.2\%$ for the 6 MeV beam. Conclusion : The vertex may be significantly under-dosed using standard techniques for total skin electron beam. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation.

  • PDF