• Title/Summary/Keyword: 전자상거래 사이트

Search Result 237, Processing Time 0.027 seconds

Designing Intelligent Agent System for Purchase Decision Making in Retail Electronic Commerce (전자상거래에서의 소비자 구매의사결정을 지원하는 지능형 에이전트 시스템의 설계)

  • Chu Seok Chin;Hong June S.
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.147-163
    • /
    • 2004
  • For the purchase of a cheaper product on the Internet, many customers have been trying to search online shopping mall sites and visit comparison-pricing shops that compare prices and other criteria of the product. Others have been participating into online auction markets or group-buying markets. However, a lot of online shopping malls, auction markets, and group-buying markets provide the same product with different prices. Since these marketplaces have different price settlement mechanism, it is very difficult for the customers to determine marketplace to purchase, considering different kinds of marketplaces at the same time. To overcome such limitations, decision rules and solution procedures for purchase decision making are necessary, which can cover multiple marketplaces simultaneously. For this purpose, purchase decision making in each market must be conducted to maximize customer's utility, and conflicts with other marketplaces must be resolved. Therefore, we have developed the rules and methods that can negotiate cooperatively the purchase decision making in several marketplaces, and designed an architecture of Intelligent Buyer Agent and a message structure to support the idea.

  • PDF

SNS Mall: A Study on the Analysis of SNS(Social Networking Service) Functions Applicable to Electronic Commerce for Building Regular Relationship with Customers (SNS 몰: 전자상거래에서 적용할 수 있는 SNS의 기능 분석 및 활용에 관한 연구)

  • Gim, Mi-Su;Ra, Young-Gook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 2020
  • We can build regular customer relationships combining SNS (social networking service) with shopping mall like offline trade. A customer who once purchased is registered as reaular and the relationship continues afterward. The registered regular customer get sthe information about objective product shipment and besides it, he contacts with a story of frams, growth of vegetables, sows to harvests. Consumer can purchase with one click necessary foods as he looks at timeline. Sellers give information about news. discounts to customers. Besides it, food storages, recipes can be given to consumers. The good point here is that selling and promoting can be performed within one account. This is better than link is provided for selling an promoting separately. Like this, besides personal connections using SNS, categorization function gives consumers on line shopping mall service. Once the consumer purchase, he is registered as regular. Besides, the consumers who do not know each other, can share information, suggest products, spread the news.

An Item-based Collaborative Filtering Technique by Associative Relation Clustering in Personalized Recommender Systems (개인화 추천 시스템에서 연관 관계 군집에 의한 아이템 기반의 협력적 필터링 기술)

  • 정경용;김진현;정헌만;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.467-477
    • /
    • 2004
  • While recommender systems were used by a few E-commerce sites former days, they are now becoming serious business tools that are re-shaping the world of I-commerce. And collaborative filtering has been a very successful recommendation technique in both research and practice. But there are two problems in personalized recommender systems, it is First-Rating problem and Sparsity problem. In this paper, we solve these problems using the associative relation clustering and “Lift” of association rules. We produce “Lift” between items using user's rating data. And we apply Threshold by -cut to the association between items. To make an efficiency of associative relation cluster higher, we use not only the existing Hypergraph Clique Clustering algorithm but also the suggested Split Cluster method. If the cluster is completed, we calculate a similarity iten in each inner cluster. And the index is saved in the database for the fast access. We apply the creating index to predict the preference for new items. To estimate the Performance, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.

Web Usage Mining Algorithm for Personalized Recommender System (개인화 된 추천정보 소기를 위한 Web Usage Mining 알고리즘)

  • Lee, Eun-Young;Kwak, Mi-Ra;Youm, Sun-Hee;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.827-829
    • /
    • 2000
  • 오늘날 인터넷 사용자들은 정보의 홍수 속에 놓여있다. 웹사이트에 들어가면 대부분은 자신과 관련 없는 정보들이 쏟아진다. 따라서 인터넷 사용자들의 관심에 맞는 내용을 제 공해주어 시간의 절약과 동시에 사용자에게 가치 있는 정보를 제공할 수 있게 하는 서비스가 필요하다. 이러한 개인화 된 서비스를 제공해주기 위해 사용자에 대한 정확한 분석을 바탕으로 사용자에게 효율적인 서비스를 제공하여야 할 것이다. 따라서 본 논문에서는 사용자 프로파일 및 웹 로그 등을 토대로 각 고객의 성향과 패턴을 정확하게 분석하여, 사용자 각 개인에게 적합하며 효율적인 서비스를 제공해 줄 수 있는 Web Usage Mining 을 통한 사용자 패턴 추출 알고리즘을 개발하고자 한다. 본 논문에서 연구한 Web Usage Mining 알고리즘은 사용자의 웹 사용 습관을 토대로 데이터 마이닝의 과정을 거쳐 사용자의 성향과 관심을 결정하고, 이를 바탕으로 사용자에게 알맞은 내용을 제공할 수 있도록 할 것이다. 이때, 사용자의 정보는 웹 내에서의 행동 중에서 중요하게 사용되는 특정한 페이지를 보는 시간, 웹 서핑 패턴, 전자 상거래 사이트의 경우에는 구매한 상품과 쇼핑 카트에 넣은 상품 등의 관찰된 정보를 기반으로 하며, 개인의 사생활을 침해하지 않는 범위 내에서 이루어지도록 했다.

  • PDF

Design and Implementation of a Web Contents Management System based on XML Components (XML 컴포넌트 기반의 웹 컨텐츠 관리 시스템의 설계 및 구현)

  • 이석재;정소영;유재수;조기형
    • Journal of Internet Computing and Services
    • /
    • v.3 no.6
    • /
    • pp.63-77
    • /
    • 2002
  • Recently, roost of the companies have, utilized internet with the purpose of business. According to this tendency, each company is exchanging various information and offering services of e-business through Web-Site. Contents on Web-Site are getting huge and the period of contents renewal is getting short. Consequently, each company is faced with many problems for the contents management because of specialization and fractionation of contents. A contents management system that creates, maintains and manages efficiently and conveniently contents on Web-Site toward solving these problems is very required. in this paper, we design and implement such a web contents management system. It also supports dynamic web page publication based on the XML components.

  • PDF

The Relationship between Online Shopping Attributes and Purchase Intention among American Consumers (미국 소비자들이 지각만 온라인 쇼핑속성과 구매의도와의 관계)

  • Kim, Eun-Young;Kim, Youn-Kyung
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.12
    • /
    • pp.63-83
    • /
    • 2002
  • 본 연구는 미국 소비자들이 지각한 온라인 쇼핑속성에 대한 차원을 밝히고. 온라인 속성에 대한 중요성과 상품범주별 구매의도와의 관계를 밝혀 상품범주별 마케팅 전략과 인터넷 소비자 관리 및 교육 프로그램 개발에 기여하고자 하였다. 조사대상자는 가정에서 인터넷을 사용하고 있는 미국 소비자 303 명으로 구성되었으며, 질문지법에 의해 자료 수집되었다. 자료분석을 위해 탐색적 요인분석을 실행하였고, LISREL8에 의해 측정모델과 구조적 관계 모델을 동시에 검증하였다. 자료 분석결과를 요약하면 다음과 같다. 첫째, 소비자가 지각한 온라인 쇼핑에 대한 속성은 거래 및 비용, 사이트 디자인, 구매유인 프로그램, 상호 관계성의 4개 차원으로 분류되었다. 둘째, 온라인 상품은 구매의도에 따라 인지적 상품, 경험적 상품, 서비스 3개 범주로 분류되었다. 셋째, 지각된 온라인 쇼핑속성의 중요도와 각상품군 구매의도와의 구조적 관계모델을 추정한 결과,“거래 및 비용”은 3개의 상품군에 대한 구매의도에 모두 유의한 영향을 주었으며,“구매유인 프로그램”은 경험적 상품과 서비스에 대한 구매의도에 유의한 영향을 미쳤다. 따라서, 소비자들에게 중요하게 지각되는 인터넷 특정 속성 즉, 보완, 배달 및 비용을 초점으로한 상품범주별 차별화된 이점을 제시하여 효과적인 마케팅 전략을 수립해야 할 것이다. 또한, 전자 상거래와 관련 보완, 환불정책 등에 관한 소비자 교육과 보호법이 요구되고 있다.

Incremental SVM for Online Product Review Spam Detection (온라인 제품 리뷰 스팸 판별을 위한 점증적 SVM)

  • Ji, Chengzhang;Zhang, Jinhong;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.89-93
    • /
    • 2014
  • Reviews are very important for potential consumer' making choices. They are also used by manufacturers to find problems of their products and to collect competitors' business information. But someone write fake reviews to mislead readers to make wrong choices. Therefore detecting fake reviews is an important problem for the E-commerce sites. Support Vector Machines (SVMs) are very important text classification algorithms with excellent performance. In this paper, we propose a new incremental algorithm based on weight and the extension of Karush-Kuhn-Tucker(KKT) conditions and Convex Hull for online Review Spam Detection. Finally, we analyze its performance in theory.

  • PDF

Legal System and Regulation Analysis by S/W Development Security (S/W 개발 보안에 따른 법 제도 및 규정 분석)

  • Shin, Seong-Yoon;Jin, Dong-Soo;Shin, Kwong-Seong;Lee, Hyun-Chang;Lee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.201-202
    • /
    • 2014
  • In this paper, we research on domestic or international hacking cases that could damage us mentally or financially. Seventy five percent of Web-site attacks abuses weak points of application programs, or software. We also research on major issues related to software development security with these demerits.

  • PDF

Analysis of the Effects of E-commerce User Ratings and Review Helfulness on Performance Improvement of Product Recommender System (E-커머스 사용자의 평점과 리뷰 유용성이 상품 추천 시스템의 성능 향상에 미치는 영향 분석)

  • FAN, LIU;Lee, Byunghyun;Choi, Ilyoung;Jeong, Jaeho;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.311-328
    • /
    • 2022
  • Because of the spread of smartphones due to the development of information and communication technology, online shopping mall services can be used on computers and mobile devices. As a result, the number of users using the online shopping mall service increases rapidly, and the types of products traded are also growing. Therefore, to maximize profits, companies need to provide information that may interest users. To this end, the recommendation system presents necessary information or products to the user based on the user's past behavioral data or behavioral purchase records. Representative overseas companies that currently provide recommendation services include Netflix, Amazon, and YouTube. These companies support users' purchase decisions by recommending products to users using ratings, purchase records, and clickstream data that users give to the items. In addition, users refer to the ratings left by other users about the product before buying a product. Most users tend to provide ratings only to products they are satisfied with, and the higher the rating, the higher the purchase intention. And recently, e-commerce sites have provided users with the ability to vote on whether product reviews are helpful. Through this, the user makes a purchase decision by referring to reviews and ratings of products judged to be beneficial. Therefore, in this study, the correlation between the product rating and the helpful information of the review is identified. The valuable data of the evaluation is reflected in the recommendation system to check the recommendation performance. In addition, we want to compare the results of skipping all the ratings in the traditional collaborative filtering technique with the recommended performance results that reflect only the 4 and 5 ratings. For this purpose, electronic product data collected from Amazon was used in this study, and the experimental results confirmed a correlation between ratings and review usefulness information. In addition, as a result of comparing the recommendation performance by reflecting all the ratings and only the 4 and 5 points in the recommendation system, the recommendation performance of remembering only the 4 and 5 points in the recommendation system was higher. In addition, as a result of reflecting review usefulness information in the recommendation system, it was confirmed that the more valuable the review, the higher the recommendation performance. Therefore, these experimental results are expected to improve the performance of personalized recommendation services in the future and provide implications for e-commerce sites.

A Collaborative Reputation System for e-Learning Content (협업적 이러닝 콘텐츠 평판시스템 연구)

  • Cho, Jinhyung;Kang, Hwan Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.235-242
    • /
    • 2013
  • Reputation systems aggregate users' feedback after the completion of a transaction and compute the "reputation" of products, services, or providers, which can assist other users in decision-making in the future. With the rapid growth of online e-Learning content providing services, a suitable reputation system for more credible e-Learning content delivery has become important and is essential if educational content providers are to remain competitive. Most existing reputation systems focus on generating ratings only for user reputation; they fail to consider the reputations of products or services(item reputation). However, it is essential for B2C e-Learning services to have a reliable reputation rating mechanism for items since they offer guidance for decision-making by presenting the ranks or ratings of e-Learning content items. To overcome this problem, we propose a novel collaborative filtering based reputation rating method. Collaborative filtering, one of the most successful recommendation methods, can be used to improve a reputation system. In this method, dual information sources are formed with groups of co-oriented users and expert users and to adapt it to the reputation rating mechanism. We have evaluated its performance experimentally by comparing various reputation systems.