For the purchase of a cheaper product on the Internet, many customers have been trying to search online shopping mall sites and visit comparison-pricing shops that compare prices and other criteria of the product. Others have been participating into online auction markets or group-buying markets. However, a lot of online shopping malls, auction markets, and group-buying markets provide the same product with different prices. Since these marketplaces have different price settlement mechanism, it is very difficult for the customers to determine marketplace to purchase, considering different kinds of marketplaces at the same time. To overcome such limitations, decision rules and solution procedures for purchase decision making are necessary, which can cover multiple marketplaces simultaneously. For this purpose, purchase decision making in each market must be conducted to maximize customer's utility, and conflicts with other marketplaces must be resolved. Therefore, we have developed the rules and methods that can negotiate cooperatively the purchase decision making in several marketplaces, and designed an architecture of Intelligent Buyer Agent and a message structure to support the idea.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.5
/
pp.1-7
/
2020
We can build regular customer relationships combining SNS (social networking service) with shopping mall like offline trade. A customer who once purchased is registered as reaular and the relationship continues afterward. The registered regular customer get sthe information about objective product shipment and besides it, he contacts with a story of frams, growth of vegetables, sows to harvests. Consumer can purchase with one click necessary foods as he looks at timeline. Sellers give information about news. discounts to customers. Besides it, food storages, recipes can be given to consumers. The good point here is that selling and promoting can be performed within one account. This is better than link is provided for selling an promoting separately. Like this, besides personal connections using SNS, categorization function gives consumers on line shopping mall service. Once the consumer purchase, he is registered as regular. Besides, the consumers who do not know each other, can share information, suggest products, spread the news.
While recommender systems were used by a few E-commerce sites former days, they are now becoming serious business tools that are re-shaping the world of I-commerce. And collaborative filtering has been a very successful recommendation technique in both research and practice. But there are two problems in personalized recommender systems, it is First-Rating problem and Sparsity problem. In this paper, we solve these problems using the associative relation clustering and “Lift” of association rules. We produce “Lift” between items using user's rating data. And we apply Threshold by -cut to the association between items. To make an efficiency of associative relation cluster higher, we use not only the existing Hypergraph Clique Clustering algorithm but also the suggested Split Cluster method. If the cluster is completed, we calculate a similarity iten in each inner cluster. And the index is saved in the database for the fast access. We apply the creating index to predict the preference for new items. To estimate the Performance, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.
오늘날 인터넷 사용자들은 정보의 홍수 속에 놓여있다. 웹사이트에 들어가면 대부분은 자신과 관련 없는 정보들이 쏟아진다. 따라서 인터넷 사용자들의 관심에 맞는 내용을 제 공해주어 시간의 절약과 동시에 사용자에게 가치 있는 정보를 제공할 수 있게 하는 서비스가 필요하다. 이러한 개인화 된 서비스를 제공해주기 위해 사용자에 대한 정확한 분석을 바탕으로 사용자에게 효율적인 서비스를 제공하여야 할 것이다. 따라서 본 논문에서는 사용자 프로파일 및 웹 로그 등을 토대로 각 고객의 성향과 패턴을 정확하게 분석하여, 사용자 각 개인에게 적합하며 효율적인 서비스를 제공해 줄 수 있는 Web Usage Mining 을 통한 사용자 패턴 추출 알고리즘을 개발하고자 한다. 본 논문에서 연구한 Web Usage Mining 알고리즘은 사용자의 웹 사용 습관을 토대로 데이터 마이닝의 과정을 거쳐 사용자의 성향과 관심을 결정하고, 이를 바탕으로 사용자에게 알맞은 내용을 제공할 수 있도록 할 것이다. 이때, 사용자의 정보는 웹 내에서의 행동 중에서 중요하게 사용되는 특정한 페이지를 보는 시간, 웹 서핑 패턴, 전자 상거래 사이트의 경우에는 구매한 상품과 쇼핑 카트에 넣은 상품 등의 관찰된 정보를 기반으로 하며, 개인의 사생활을 침해하지 않는 범위 내에서 이루어지도록 했다.
Recently, roost of the companies have, utilized internet with the purpose of business. According to this tendency, each company is exchanging various information and offering services of e-business through Web-Site. Contents on Web-Site are getting huge and the period of contents renewal is getting short. Consequently, each company is faced with many problems for the contents management because of specialization and fractionation of contents. A contents management system that creates, maintains and manages efficiently and conveniently contents on Web-Site toward solving these problems is very required. in this paper, we design and implement such a web contents management system. It also supports dynamic web page publication based on the XML components.
본 연구는 미국 소비자들이 지각한 온라인 쇼핑속성에 대한 차원을 밝히고. 온라인 속성에 대한 중요성과 상품범주별 구매의도와의 관계를 밝혀 상품범주별 마케팅 전략과 인터넷 소비자 관리 및 교육 프로그램 개발에 기여하고자 하였다. 조사대상자는 가정에서 인터넷을 사용하고 있는 미국 소비자 303 명으로 구성되었으며, 질문지법에 의해 자료 수집되었다. 자료분석을 위해 탐색적 요인분석을 실행하였고, LISREL8에 의해 측정모델과 구조적 관계 모델을 동시에 검증하였다. 자료 분석결과를 요약하면 다음과 같다. 첫째, 소비자가 지각한 온라인 쇼핑에 대한 속성은 거래 및 비용, 사이트 디자인, 구매유인 프로그램, 상호 관계성의 4개 차원으로 분류되었다. 둘째, 온라인 상품은 구매의도에 따라 인지적 상품, 경험적 상품, 서비스 3개 범주로 분류되었다. 셋째, 지각된 온라인 쇼핑속성의 중요도와 각상품군 구매의도와의 구조적 관계모델을 추정한 결과,“거래 및 비용”은 3개의 상품군에 대한 구매의도에 모두 유의한 영향을 주었으며,“구매유인 프로그램”은 경험적 상품과 서비스에 대한 구매의도에 유의한 영향을 미쳤다. 따라서, 소비자들에게 중요하게 지각되는 인터넷 특정 속성 즉, 보완, 배달 및 비용을 초점으로한 상품범주별 차별화된 이점을 제시하여 효과적인 마케팅 전략을 수립해야 할 것이다. 또한, 전자 상거래와 관련 보완, 환불정책 등에 관한 소비자 교육과 보호법이 요구되고 있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.89-93
/
2014
Reviews are very important for potential consumer' making choices. They are also used by manufacturers to find problems of their products and to collect competitors' business information. But someone write fake reviews to mislead readers to make wrong choices. Therefore detecting fake reviews is an important problem for the E-commerce sites. Support Vector Machines (SVMs) are very important text classification algorithms with excellent performance. In this paper, we propose a new incremental algorithm based on weight and the extension of Karush-Kuhn-Tucker(KKT) conditions and Convex Hull for online Review Spam Detection. Finally, we analyze its performance in theory.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.201-202
/
2014
In this paper, we research on domestic or international hacking cases that could damage us mentally or financially. Seventy five percent of Web-site attacks abuses weak points of application programs, or software. We also research on major issues related to software development security with these demerits.
Because of the spread of smartphones due to the development of information and communication technology, online shopping mall services can be used on computers and mobile devices. As a result, the number of users using the online shopping mall service increases rapidly, and the types of products traded are also growing. Therefore, to maximize profits, companies need to provide information that may interest users. To this end, the recommendation system presents necessary information or products to the user based on the user's past behavioral data or behavioral purchase records. Representative overseas companies that currently provide recommendation services include Netflix, Amazon, and YouTube. These companies support users' purchase decisions by recommending products to users using ratings, purchase records, and clickstream data that users give to the items. In addition, users refer to the ratings left by other users about the product before buying a product. Most users tend to provide ratings only to products they are satisfied with, and the higher the rating, the higher the purchase intention. And recently, e-commerce sites have provided users with the ability to vote on whether product reviews are helpful. Through this, the user makes a purchase decision by referring to reviews and ratings of products judged to be beneficial. Therefore, in this study, the correlation between the product rating and the helpful information of the review is identified. The valuable data of the evaluation is reflected in the recommendation system to check the recommendation performance. In addition, we want to compare the results of skipping all the ratings in the traditional collaborative filtering technique with the recommended performance results that reflect only the 4 and 5 ratings. For this purpose, electronic product data collected from Amazon was used in this study, and the experimental results confirmed a correlation between ratings and review usefulness information. In addition, as a result of comparing the recommendation performance by reflecting all the ratings and only the 4 and 5 points in the recommendation system, the recommendation performance of remembering only the 4 and 5 points in the recommendation system was higher. In addition, as a result of reflecting review usefulness information in the recommendation system, it was confirmed that the more valuable the review, the higher the recommendation performance. Therefore, these experimental results are expected to improve the performance of personalized recommendation services in the future and provide implications for e-commerce sites.
Reputation systems aggregate users' feedback after the completion of a transaction and compute the "reputation" of products, services, or providers, which can assist other users in decision-making in the future. With the rapid growth of online e-Learning content providing services, a suitable reputation system for more credible e-Learning content delivery has become important and is essential if educational content providers are to remain competitive. Most existing reputation systems focus on generating ratings only for user reputation; they fail to consider the reputations of products or services(item reputation). However, it is essential for B2C e-Learning services to have a reliable reputation rating mechanism for items since they offer guidance for decision-making by presenting the ranks or ratings of e-Learning content items. To overcome this problem, we propose a novel collaborative filtering based reputation rating method. Collaborative filtering, one of the most successful recommendation methods, can be used to improve a reputation system. In this method, dual information sources are formed with groups of co-oriented users and expert users and to adapt it to the reputation rating mechanism. We have evaluated its performance experimentally by comparing various reputation systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.