• Title/Summary/Keyword: 전자냉각

Search Result 477, Processing Time 0.022 seconds

Properties of Rice Flour Prepared with Roll Mill and Pin Mill after Tempering (조질 후 Roll Mill과 Pin Mill의 제분 및 쌀가루의 특성)

  • 김형열;이병영;유효숙;최중경;함승시
    • Food Science and Preservation
    • /
    • v.6 no.3
    • /
    • pp.313-318
    • /
    • 1999
  • The Properties of rice flour and consumed electricity to make rice flour were compared among three different process ; 1. roll mill after soaking rice in water, 2. roll mill after tempering, 3. try pin mill. When rice was milled by roll mill and pin-milled after tempering for 10 hrs(TRPMR), consumed electricity and moisture content of rice flour were the least. Particle size of rice flour prepared with TRPMR was 87.4% of 100 mesh or more which was the highest number among the rice flour prepared using different processes. Gelatinization temperature of the rice flour was 63.2$^{\circ}C$ and was 1.3$^{\circ}C$ lower than that of rice flour prepared with other processes. Viscosity of the rice flour prepared by TRPMR was the least. Whiteness of the rice flour prepared by TRPMR was similar to that of wheat flour.

  • PDF

EF-TEM을 이용한 직접가열 실험을 통한 Titanium의 고온에서의 상변화 연구

  • 김진규;이영부;김윤중
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.22-23
    • /
    • 2002
  • Titanium은 높은 강도, 낮은 밀도, 부식에 대한 저항 등, 타 금속에 비해 월등히 뛰어난 성질을 가지고 있기 때문에 산업 전반에 거쳐 그 응용이 크게 증가하고 있으며, 특히 고온에서의 응용이 중요성을 띠게 됨에 따라 고온으로의 상전이 관계에 따른 구조적 규명이 필요하다. 순수한 titanium은 상온에서 조밀충진 육방정계의 α-상구조(a=2.953Å, c=4.683 Å, P6₃/mmc)를 이루고 있으나, 대략 880℃ 이상에서는 β-상의 체심입방정계 (a=3.320Å, Im3m)로 상전이가 되는 것으로 알려져 있다. 이에 대한 대부분의 연구가 kinetics와 thermodynamics에 관련되어 있으며, TEM을 이용한 직접가열실험은 거의 전무한 상태이다. 본 실험에서는 TEM 직접가열을 통하여 titanium의 고온에서의 상전이와 가열시 발생할 수 있는 산화층 형성을 연구하였다. TEM 시편은 순도 99.94%의 titanium foil(Alfa Aesar, #00360, 0.025mm thick)를 이용하였고, 분석 장비로는 에너지여과 기능이 있는 TEM(EM912 Omega, Carl Zeiss)과 Gatan사의 double-tilt heating holder를 사용하였다. Titanium의 상전이를 관찰하기 위해 900℃ 까지 분당 10℃ 의 속도로 가열을 하였다. 통계적 분석 오차를 줄이기 위해 서로 다른 4군데의 관찰영역을 선택하여, 상온 - 600℃ - 900℃ - 상온의 단계별로 회절패턴을 관찰 및 기록하였고, 발생 가능한 산화에 대해서는 동일한 장비를 사용하여 EDS 분석을 하였다. 상온에서의 서로 다른 영역의 회절패턴들은 결함의 존재에 상관없이, 온도가 증가함에 따라 그 결함수가 증가하게 된다. 특히 600℃ 에서는 쌍정과 관련된 회절점들이 본래의 회절점 주위에 형성되어있지만, 각 면들의 격자상수의 변화는 나타나지 않았다. 그러나 900℃ 에서는 쌍정에 의한 회절점의 수가 증가하며, 회절점 사이에 발달한 뚜렷한 막대모양의 강도분포와 격자상수의 변화를 관찰할 수 있었다. 다시 상온으로 냉각시킨 후 관찰한 각각의 회절패턴에서는 격자 상수의 감소와 함께 900℃에 보여진 막대 모양의 강도분포와 쌍정에 의한 회절점들이 여전히 남아있었다. EDS분석 결과 가열 실험을 통해 시편이 열적 산화가 되어 있음을 확인 할 수 있었다. 순수한 titanium의 α-상에서 β-상으로의 상전이를 파악할 수 있는 격자상수의 변화자체는 매우 작은 값이기 때문에 상온과 900℃ 에서 기록된 전자회절패턴 상에서의 면간거리와 면간각도의 측정만으로는 상전이 여부를 명확히 구별할 수 없었다. 그러나, 결함에 의한 상변화가 900℃ 에서 심하게 관찰되어지는 것은 상전이와 관계가 있는 것으로 볼 수 있다. 고온에서 상온으로의 가역적 반응을 관찰할 수 없었던 이유는 열적산화로 생긴 산화층의 산소원자들이 고온의 상전이 과정 중에 Ti 원자와 반응이 일어나 TiO/sub X/ 구조로 전이되었기 때문으로 추정하고 있다.

  • PDF

Growth of $PbMg_{1/3}Nb_{2/3}O_3$ Single Crystals by Flux Method (융제법에 의한 $PbMg_{1/3}Nb_{2/3}O_3$단결정 성장)

  • 임경연;박찬석
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 1997
  • A perovskite relaxor ferroelectrics PMN is used as an important material to investigate the diffusive phase transition phenomena. In this study PMN single crystals were grown and the microstructure were observed. For the growth of PMN single crystals, the spontaneous nucleation technique and the TSSG technique were used. 2-5mm single crystals were grown from PbO self flux and it was observed that only PMN crystals were grown when excess MgO was added over 100% as flux. Single crystals with well developed (001) faces were obtained from PbO-B2O3 flux. single crystals larger than 1 cm were grown from PbO-B2O3 flux by TXXG technique. For higher quality crystals, optimization of the variables such as the rotation speed of seed crystal, the orientation of seed crystal, and cooling rate is needed. With grown crystals, it was confirmed by TEM diffraction pattern of thin plate crystal that the 1:1 ordering of Mg2+ and Nb5+ with small volume exists.

  • PDF

Experimental Study on the Two Phase Thermosyphone Loop with Parallel Connected Multiple Evaporators under Partial Load and Low Temperature Operating Condition (병렬 연결된 다중 증발기 구조 2상 유동 순환형 열사이폰의 부분부하 및 저온운전 특성에 관한 실험적 연구)

  • Kang In-Seak;Choi Dong-Kyu;Kim Taig-young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1051-1059
    • /
    • 2004
  • Two phase thermosyphone loop for electronics cooling are designed and manufactured to test its performance under the partial load and low environment temperature conditions. The thermosyphone device has six evaporators connected parallel for the purpose of cooling six power amplifier units (PAU) independently. The heater modules for simulating PAUs are adhered with thermal pad to the evaporator plates to reduce the contact resistance. There are unbalanced distributions of liquid refrigerant in the differently heated evaporators due to the vapor pressure difference. To reduce the vapor pressure differences caused by partial heating, two evaporators are connected each other using the copper tube. The pressure regulation tube successfully reduces these unbalances and it is good candidates for a field distributed systems. Under the low environment temperature operating condition, such as $-30^{\circ}C$, there may be unexpected subcooling in condenser. It leads the very low saturation pressure, and under this condition there exists explosive boiling in evaporator. The abrupt pressure rise due to the explosive boiling inhibits the supplement of liquid refrigerant to the evaporator for continuous cooling. Finally the cooling cycle will be broken. For the normal circulation of refrigerant there may be an optimum cooling air flow rate in condenser to adjust the given heat load.

Experimental Study on the Cooling Characteristics of an Environmental Control System for Avionic Reconnaissance Equipment (항공정찰장비용 환경제어시스템의 냉각특성에 관한 실험적 연구)

  • Kang, Hoon;Park, Hyung-Pil;Lee, Eung-Chan;Kim, Yong-Chan;Chi, Yong-Nam;Choi, Hee-Ju;Byeon, Young-Man;Kim, Young-Jin;Oh, Kwang-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.519-526
    • /
    • 2009
  • Environmental control system is adopted to control the thermal load from the avionic equipment in the reconnaissance pod which is mounted under a fighter aircraft, undergoing large and rapid environmental changes with the variations of flight altitude and velocity. In this study, an environmental control system was designed and built by adopting vapor compression cycle using R-124. The cooling performance characteristics of the system were measured varying operating parameters: thermal load in the pod, air mass flow rate through evaporator, condenser inlet air temperature, and air mass flow rate through condenser. The effects of the experimental parameters on the system performance were analyzed based on the experimental results. The problems on the designed system were also analyzed and the solutions were suggested to improve system efficiency and to obtain stable operation.

Study on PWHT embrittlement of weld HAZ in Cr-Mo steel (Cr-Mo 鋼 溶接熱影響部의 溶接後熱處理 脆化에 관한 硏究)

  • 임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.314-321
    • /
    • 1987
  • Post weld heat treatment (PWHT) of weldment of the low alloy Cr-Mo steel, in general, is carried out not only to remove residual stress and hydrogen existing in weldment but to improve fracture toughness of weld heat affected zone (HAZ). There occur some problems such as toughness decrement and stress relief cracking (SRC) in the coarse grained region of weld HAZ when PWHT is practiced. Especially, embrittlement of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface such as grain boundary failure. Therefore, in this paper, the effect of heating rate on PWHT embrittlement under the various kinds of stresses simulated residual stress in weld HAZ was evaluated by COD fracture toughness test and observation of fracture surface. Fracture toughness of weld HAZ decreased with increment of heating rate under no stress, but it was improved to increment of heating rate under the stress. Grain boundary failure didn't almost appear at the heating rate of 600.deg.C/hr but it appeared from being the applied stress of 294 MPa at 220.deg.C/hr and 196 MPa at 60.deg.C/hr.

Modification and Installation Design of Airframe Structures for Performance Improved Aircraft (성능개량 항공기의 기체구조물 개조 및 장착설계)

  • Dae Han Bang;Hyeon Seok Lee;Min Soo Lee;Min Ho Lee;Jae Man Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.87-94
    • /
    • 2023
  • This paper addresses the installation and modification design of airframe structures for new and modified equipment installations that are essential for aircraft performance improvement. Typical performance improvement equipment mounted on the exterior of the aircraft include antenna, radar, electro-optical/infrared (EO/IR), and self-protection system equipment, which require structural reinforcement, modification, and mounting design of the green aircraft for operation. In the interior of the aircraft, console and rack structures are modified or added according to user operation requirements. In addition, this is accompanied by the installation design of equipment to be replaced and added for performance improvement, and the according modification of environmental control system components for internal cooling. The engineering process and cases in which airworthiness was verified through the detailed design of airframe structures with structural integrity, operability, and maintainability of performance-improved aircraft are presented.

A Study on the Evaluation Method of Lap Shear Strength for Induction Welding of Thermoplastic Composites using Tensile Test (인장 시험을 이용한 열가소성 복합재료 유도용접 전단강도 평가방법에 대한 고찰)

  • Baek, Inseok;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2022
  • Currently, Induction welding is attracting attention as a non-contact, clean and fast welding process. However, since thermoplastic resins are not affected by electromagnetic fields, induction welding requires a heating element called a susceptor. Researches are being conducted with the aim of achieving high-quality bonding, however, the factor of a heating element is an issue, hence the need to set a standard. Specimen fabrication and testing are conducted according to ASTM D5868. In this study, we propose that the evaluation criteria be judged on the basis of three factors; the condition of the welded joint surface, void content, and lap shear strength. Since the adhesive surface to be welded melts and solidifies as it cools, rapid temperature changes can generate pores. In addition, if the heating is not uniform, it is difficult to expect the desire performance. Using PA6 (CF 30%) thermoplastic, susceptor fabrication, induction welding and performance verification were conducted.

A Brief Review on Membrane-Based Hydrogen Isotope Separation (막 기반 수소동위원소 분리 연구에 대한 총설)

  • Soon Hyeong So;Dae Woo Kim
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.114-123
    • /
    • 2024
  • Hydrogen isotopes can be categorized into light hydrogen, heavy hydrogen, and tritium based on the number of neutrons, each of which is used in specific fields. Specifically, deuterium is of interest in the electronics industry, nuclear energy industry, analytical technology industry, pharmaceutical industry, and telecommunications industry. Conventional methods such as cold distillation, thermal cycling absorption processes, Girdler sulfide processes, and water electrolysis have their own advantages and disadvantages, leading to the need for alternative technologies with high separation and energy efficiency. In this context, membrane-based hydrogen isotope separation is one of the promising solutions to reduce energy consumption. In this review, we will present the state-of-the-art in hydrogen isotope separation using membranes and their operating principles. The technology for separating hydrogen isotopes using membranes is just beginning to be conceptualized, and many challenges remain to be overcome. However, if achieved, the economic benefits are expected to be significant. We will discuss future research directions for this purpose.

In-Vivo Heat Transfer Measurement using Proton Resonance Frequency Method of Magnetic Resonance Imaging (자기 공명영상 시스템의 수소원자 공명 주파수법을 이용한 생체 내 열 전달 관찰)

  • 조지연;조종운;이현용;신운재;은충기;문치웅
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.172-180
    • /
    • 2003
  • The purpose of this study is to observe the heat transfer process in in-vivo human muscle based on Proton Resonance Frequency(PRF) method in Magnetic Resonance Imaging(MRI). MRI was obtained to measure the temperature variation according to the heat transfer in phantom and in-vivo human calf muscle. A phantom(2% agarose gel) was used in this experiment. MR temperature measurement was compared with the direct temperature measurement using a T-type thermocouple. After heating agarose gel to more than 5$0^{\circ}C$ in boiling hot water, raw data were acquired every 3 minutes during one hour cooling period for a phantom case. For human study heat was forced to deliver into volunteer's calf muscle using hot pack. Reference data were once acquired before a hot pack emits heat and raw data were acquired every 2 minutes during 30minutes. Acquired raw data were reconstructed to phase-difference images with reference image to observe the temperature change. Phase-difference of the phantom was linearly proportional to the temperature change in the range of 34.2$^{\circ}C$ and 50.2$^{\circ}C$. Temperature resolution was 0.0457 radian /$^{\circ}C$(0.0038 ppm/$^{\circ}C$) in phantom case. In vivo-case, mean phase-difference in near region from the hot pack is smaller than that in far region. Different temperature distribution was observed in proportion to a distance from heat source.