• Title/Summary/Keyword: 전자기 복사 위해도

Search Result 23, Processing Time 0.016 seconds

The spectroscopic study of chemical reaction of laser-ablated aluminum-oxygen by high power laser (분광분석을 활용한 고에너지 레이저 환경에서의 알루미늄-산소 화학반응 연구)

  • Kim, Chang-hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.789-795
    • /
    • 2016
  • Laser-induced combustions and explosions generated by high laser irradiances were explored by Laser-Induced Breakdown Spectroscopy (LIBS). The laser used for target ablation is a Q-switched Nd:YAG laser with 7 ns pulse duration at wavelength of 1064 nm laser energies from 40 mJ to 2500 mJ ($6.88{\times}10^{10}-6.53{\times}10^{11}W/cm^2$). The plasma light source from aluminum detected by the echelle grating spectrometer and coupled to the gated ICCD(a resolution (${\lambda}/{\Delta}{\lambda}$) of 5000). This spectroscopic study has been investigated for obtaining both the atomic/molecular signals of aluminum-oxygen and the calculated ambient condition such as plasma temperature and electron density. The essence of the paper is observing specific electron density ratio which can support the processes of chemical reaction and combustion between ablated aluminum plume and oxygen from air by inducing high laser energy.

Implementation and Verification for the Low RCS Characteristics of Active Phased Array Antenna (능동위상배열 안테나의 저피탐 특성 구현 및 검증)

  • Joung-Myoung Joo;;Heeduck Chae;Jongkuk Park;Young-Jo Choi;Hyeong-Ki Lee;Jeongyun Han;Jeong-Hwan Jeon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • As the latest weapon systems and electronic equipments are increasingly demanding stealth technology to improve the survivability of allies, it is necessary to implement low-observability technology that reduces the radar cross section(RCS). In order to implement this stealth technology, a method for low RCS characteristics by applying a shape design or a electromagnetic wave absorber is widely used. However, active phased array antennas have structural limitations in shape design, also when a absorber is applied to it, the performance of the antenna is degraded. Therefore, in this paper, in order to realize the low RCS characteristics of the active phased array antenna operating in the X-band, individual radiating elements suitable for applying the radio wave absorber were selected, and a 13x13 array antenna was designed and manufactured. Next, by comparing the measured results of the relative RCS and electrical performance for the manufactured antenna according to the presence and type of the absorber, it is shown that the electrical performance is maintained at an equal or higher level while obtaining the low RCS characteristics. Thereby the method proposed in this paper for implementing the low RCS characteristics was validated. Finally, it was confirmed that when the wave absorber is applied to the array antenna, the limitation of its performance deterioration can be overcome.

DEVELOPMENT OF A FLUXGATE MAGNETOMETER FOR THE KITSAT-3 SATELLITE (과학위성용 자력계 탑재체 개발에 관한 연구)

  • ;;;;;;Onishi Nobugito
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.312-319
    • /
    • 1997
  • The magnetometer is one of the most important payloads for scientific satellite to monitor the near-earth space environment. The electromagnetic variations of the space environment can be observed with the electric and magnetic field measurements. In practice, it is well known that the measurement of magnetic fields needs less technical complexities than that of electric fields in space. Therefore the magnetometer has long been recognized as one of the basic payloads for the scientific satellites. In this paper, we discuss the scientific fluxgate magnetometer which will be on board the KITSAT-3. The main circuit design of the present magnetometer is based on that of KITSAT-1 and -2 but its facilities have been re-designed to improve the resolution to about 5nT for scientific purpose. The calibration and noise level test of this circuit have been performed at the laboratory of the Tierra Tecnica company in Japan.

  • PDF